
A Model for Housing Development in Montana

Prepared for:

Patty Gude

Headwaters Economics

P.O. Box 7059

Bozeman, MT 59771

Ph: 406-599-7425 ; Email: patty@headwaterseconomics.org

Prepared by:

Trent L. McDonald, Ph.D.

Western EcoSystems Technology, Inc.

2003 Central Avenue

Cheyenne, Wyoming

Ph: 307-634-1756 ; Email: tmcdonald@west-inc.com

December 1, 2010

Environmental and Statistical Consultants



1 Introduction

WEST Inc. was contracted by Headwaters Economics to construct a predictive model for the number

of new housing units constructed between 2000 and 2008 in the state of Montana. The purpose of this

model was first to identify landscape characteristics correlated with new house construction, and second

to forecast the number of new houses during the next 9 years (2008 - 2016). These predictions can

then be used to identify “hot-spots” or other areas of large growth.

For estimation of the model, Headwaters Economics provided a data set containing the number of

new houses constructed during 2000 - 2008 in every quarter section of Montana. A description of the

17 variables contained in the data set appears in Table 1. This data set contained 362, 585 records,

one for each quarter section containing private land in the state of Montana. The response variable of

interest was the number of new homes built on any particular quarter section during 2000 - 2008 (i.e.,

homeschg, Table 1). This response took on values from 0 to 523 , with 96% of the responses statewide

equal to zero.

In this report, we describe the statistical methods WEST Inc. used to construct the predictive model

for number of homes on a quarter section. These methods include an initial exploratory data analysis,

estimation of 4 types of models, model validation, and forecasting.

2 Methods

2.1 Exploratory Data Analysis

The purpose of exploratory data analysis was to identify general characteristics of the data. Two

explorations were performed: mapping of non-zero counts, and characterization of missing values. All

non-zero counts of the primary response variables, homeschg, were mapped and inspected for broad

patterns. We looked for extreme clumping, sparsity, or broad trends that could influence estimation

of the primary models. The second exploratory analysis identified the variables and observations with

large numbers of missing values and the patterns of those missing values. This information was used to

decide how best to treat missing values.

2.2 Models

Prior to model building, all covariates considered for inclusion in the model were scaled to have zero

mean and unit variances. The equation for scaling a covariate was,

x∗ =
x− x̄
std(x)

, (1)

where x∗ was the scaled variable to be fitted in models. Scaling was performed because covariates in

the data set measured drastically different quantities over differing ranges. Scaling stabilized model
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estimation by making variation comparable among covariates and thus contributions to the model by

different variables were comparable.

The following four regression models were fitted to homeschg: 1) a standard linear model, 2) a

linear model after log transforming the response, 3) a generalized linear model (GLM) with a log link

that assumed homeschg followed a Poisson distribution, and 4) a zero-inflated Poisson (ZIP) model. A

GLM assuming homeschg followed a negative binomial likelihood was also considered but variation in

homeschg was large and the numerical fitting routine would not converge. A ZIP model that assumed

a negative binomial likelihood for non-zero values was also attempted, but resulted in fitted values that

were many orders of magnitude (i.e., 10000×) larger than observed. Each of the 4 successful models is

described next.

2.2.1 Linear model

The linear model was,

E[yi] = β0 + β1xi1 + . . .+ βpxip

where yi = homesch for the ith quarter section containing private land in Montana, xij was the value of

the jth covariate for the ith quarter section, and βj was the estimated coefficient for the jth covariate.

Here, the residuals (yi − E[yi]) were assumed to following a normal distribution with mean 0 and

covariance matrix σI.

2.2.2 Log-linear model

The log-linear model was,

E[ln(yi)] = β0 + β1xi1 + . . .+ βpxip.

Here, the residuals (ln(yi) − E[ln(yi)]) were assumed to following a normal distribution with mean 0

and covariance matrix σI.

2.2.3 Generalized linear model

The generalized linear model relaxed the requirement that residuals follow a normal distribution and

assumed a log link function. The generalized linear model was,

ln(E[yi]) = β0 + β1xi1 + . . .+ βpxip.

Here, the observed counts yi were assumed to be independent and follow a Poisson distribution with

mean E[yi].

2.2.4 Zero-inflated Poisson model

The zero-inflated Poisson model attempted to account for the large proportion of zeros in the data.

Under this model, the random process resulting in a certain number of houses being added to a quarter

section was assumed to have two phases. First, the process “decides” whether to place additional houses
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on a quarter section. If so, the process then “decides” how many to put on the quarter section. Under

this model, zeros can arise in two ways. Zeros can occur because the process “decided” not to put

additional houses on the quarter section. Or, zeros can occur because the process has not yet added

houses to the quarter section even though it previously “decided” to place houses there.

Statistically, the ZIP model assumed that the distribution of house additions was a mixture of a

point mass at yi = 0 and a Poisson distribution. The ZIP mixture distribution had density function,

f(yi) = ωI(yi=0) + (1− ωi)1−I(yi=0) e
−λiλyii
yi!

,

where I(yi = 0) is an indicator function equal to 1 if yi = 0, and 0 otherwise. Under this model the

mean and variance of yi were

E[yi] = (1− ωi)λi

V ar(yi) = E[yi] +

(
ωi

1− ωi

)
E[yi]

2

As in the previous models, the ZIP model assumed counts yi were independent.

To relate parameters of the ZIP distribution to study covariates, separate linear models were proposed

for λi and ωi, i.e,.

log(λi) = β0 + β1xi1 + . . .+ βpxip

log

(
ωi

1− ωi

)
= γ0 + γ1zi1 + . . .+ γqziq.

2.3 Estimation

All estimates were computed by the method of maximum likelihood, and took place using the R

statistical software package (http://www.r-project.org). The linear, log-linear, and generalized

linear model used the built-in functions lm() and glm(). Estimation of coefficients in the ZIP model

used the function zeroinfl() in the pscl library. The R code used to fit the models and perform model

validation is included in Appendix A.

2.4 Model Selection

For the linear, log-linear, and GLM model, the set of variables included in the best fitting model was

selected using backward stepwise elimination. Backward elimination utilized AIC to assess the predictive

strength and utility of individual variables in the model, and stopped when it was no longer possible

to remove a variable and decrease AIC. The initially full model contained homes 1mi, home8yr1mi,

water dist, rd dens, mjrd dist, ecoregion, summit den, pcinc, pop dens, ap tt, and town tt

(Table 1). The two homes variables, home and homes8yr, were not considered for inclusion due to high

correlation with their counterparts computed on a 1 mile buffer surrounding the quarter section (r = 0.85

between home and homes 1mi; r = 0.78 between homes8yr and home8yr1mi). Because these home
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variables were deemed to be measuring similar characteristics, the values computed on a 1 mile buffer

surrounding the quarter section were chosen for potential inclusion because they encompassed more area

and contained more variation than their counterparts computed on a single quarter section. Geographic

coordinates were not considered for inclusion because it was felt that the covariates already being

considered adequately quantified spatial characteristics important to housing development in Montana.

Contrary to the other models, the ZIP model was computationally expensive and unstable. For these

reasons, stepwise selection was not used to select variables in the ZIP model. Covariates in the ZIP

model were chosen after backward selection of the other models was complete. The set of covariates

in the other models was inspected and a judgement was made as to which were appropriate to include

in a ZIP model designed to forecast future development. The covariates included in the ZIP model for

λ were home8yr1mi, water dist, rd dens, mjrd dist, ecoregion, summit den, pcinc, pop dens,

ap tt, and town tt. The covariates included in the ZIP model for ω were home8yr1mi and town tt.

Once a model of each type was estimated, a combination of k-fold cross validation and visual

inspection was used to select the final model. K -fold cross validation first divided the data set into k =

10 equally sized sets of observations, then excluded each set in turn and re-estimated the model on the

remaining k − 1 = 9 sets. Mean square predictive error (MSPE) of the refitted model for the excluded

observations was then computed and summed over the k sets, i.e.,

MSPE =
k∑
j=1

√√√√ nj∑
i=1

(yij − ŷij)2
n− 1

.

where nj was the number of observations in the jth excluded set (nj ≈ n/k), yij was the value

of homeschg for the ith observation in the jth excluded set and ŷij was the predicted value for yij
computed by a model that was estimated using a data set that excluded the jth set of observations.

Because observations were highly skewed, with large values in or near cities, and because prediction

accuracy in rural or undeveloped areas was paramount, values of homeschg > 20 were excluded when

computing MSPE. Observed values greater than 20 were including during model estimation.

The observed and predicted values of homeschg were also mapped and inspected. During inspection,

spatial extent and appropriateness of the predictions were the primary qualities being assessed. Following

k-fold cross validation and visual inspection, a final model from among the 4 types was chosen.

2.5 Forecasts

To map predictions of the future number of houses that will be built on a quarter section during 2008 -

2016, appropriate values of all covariates in the final model must be known or estimated. Of the variables

potentially included in the final model, only the home count variables (homes 1mi and home8yr1mi)

change drastically over the course of a decade. To make predictions of housing development between

2008 and 2016, the values of homes 1mi and home8yr1mi were updated to cover the period 2000 - 2008

and used to make predictions. Past values of all other covariates in the final model were propagated

forward for predictions. All predicted values were truncated at zero if necessary.

In addition to mapping the predicted average number of houses built on a quarter section over an

infinite number of future 9 year periods, a 95% lower prediction limit was also computed. The predicted
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average constituted a best point estimate of the number of houses to be built on a quarter section

during 2008 - 2016. The 95% lower prediction limit can be interpreted as follows: if L is the 95% lower

prediction limit for a particular quarter section, researchers can be 95% sure that the true number of

houses built on that quarter section during 2008 - 2016 will be greater than L. From predictions for

periods 2000 - 2008 and 2008 - 2016, home building acceleration or deceleration can be computed. If

ŷ08i and ŷ16i are the predicted number of homes added during the respective 9 year period, acceleration

values were computed as the difference ŷ16i − ŷ08i .

3 Results

3.1 Exploratory Data analysis

Figure 1 shows a map of observed homeschg for Montana. Larger counts of additional homes were

clustered in and around cities like Billings, Bozeman, Missoula, and Helena. Other than clustering

around towns, the density of non-zero counts generally increased in the west and south-west parts of

Montana relative to eastern Montana.

Five covariates in the data set contained smaller numbers of missing values due to representational

errors inherent in the GIS datasets. The covariates pcinc and pop dens each had 277 missing values

(0.076%), while rd dens, mjrd dist, ap tt each had 274 missing values. The covariates water dist,

summit den, and town tt were missing 273, 97, and 70 times, respectively. The missing values in

these covariates were nested in a descending order. For example, all observations with missing values for

summit den also had missing values for water dist, and all those observations had missing values for

ap tt, and so on. By removing observations (rows) that were missing for the variable with the largest

number, all rows containing missing observations were removed. Consequently, all rows with missing

values for pcinc were removed from the data set prior to modeling. The final modeling data set

contained n = 362, 308 records (quarter sections). Means and standard deviations used to standardize

the variables in the final modeling data set appear in Table 2.

3.2 Model Selection

The estimated models and cross-validation scores for each of the estimated models appear in Table

3. The smallest cross-validation prediction error resulted from the GLM model (MSPE = 1.78), followed

by the ZIP (MSPE = 2.04) and linear model (MSPE = 2.15). The high value of MSPE for the log-

linear model (MSPE = 22.7) was caused by a few very large predictions. Despite small values of average

prediction error, inspection of the observed and predicted maps (Figure 2) revealed that the GLM and

ZIP model did not predict housing growth in isolated areas away from cities and roads. Housing growth,

however, does occur in isolated areas away from cities (Figure 1), and the linear model produced better

predictions in these areas. Because accurate predictions away from cites was paramount to the study,

the linear model was chosen as the best and final forecasting model to use.

In the final linear model, the number of houses built between 2000 and 2008 was positively related

to the following variables:
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• Number of homes built during the previous 9 year period calculated over a 1 mile buffer surrounding

the quarter section (homes8yr1mi),

• Mean per capita income in 2000 (pcinc),

• Road density within 1 mile of the quarter section (rd dens), and

• Travel time to the nearest town (town tt).

The number of homes was negatively related to the following variables:

• Absolute number of homes in 2000 in the quarter section and a 1 mile buffer surrounding it

(homes 1mi),

• Population density in 2000 (pop dens), and

• The number of mountain peaks within 10 miles of the quarter section (summit den).

By ecoregion, growth was highest in the “NW Glaciated” region, followed by “NW Plains”, followed by

“N Rockies”.

Because all variables were standardized prior to modeling, Wald t-ratios (Coef/SE) can be used

to assess the relative strength of each variable for prediction. Among variables in the final model, past

home growth (homes8yr1mi) was by far the strongest predictor of future growth (t = 275.8). The

number of homes already in the surrounding area (homes 1mi), and road density (rd dens) were also

strong predictors of future growth (t = −11.4 for homes 1mi; t = 10.3 for rd dens). The next highest

Wald t-ratio was 5.8 for town tt.

3.3 Forecasts

By updating the home count variables to cover the period 2000 to 2008 (rather than 1999 to 2000),

a forecast of growth during the period 2008 to 2016 was made. A map of predicted growth in number

of houses during 2008 - 2016 appears in Figure 3. From Figure 3, it is clear that the majority of

growth is predicted to occur around existing towns. Other areas predicted to have high growth are

those in relatively developed valleys (e.g., near Missoula or Helena) where road density is relatively high.

Acceleration values for the area around Bozeman (Figure 4) shows approximately equal proportions of

areas with increased and decreased rates of home building.
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4 Tables and Figures

Table 1: All variables in the data base used to develop a model for number of homes built in quarter
sections of Montana.

Variable Description

home Number of homes present in 2000 in each quarter section
homes8yr Number of homes built between 1992 and 2000 in each quarter section
homeschg (response) Number of homes built between 2000 and 2008 in

each quarter section
homes 1mi Number of homes per quarter section in 2000 within 1 mile of each

quarter section
home8yr1mi Number of homes per quarter section built between 1992 and 2000

within 1 mile of each quarter section
water dist Mean Euclidian distance in meters to nearest major body of water

rd dens Mean road density within 1 mile of each quarter section, expressed
as miles of road per square mile of area

mjrd dist Mean Euclidian distance in meters to nearest major road (interstates,
state highways, primary and secondary roads)

ecoregion 1 = Northwestern Glaciated Plains (N and NE Montana); 2 = Northwestern
Great Plains (E and parts of central Montana); 3 = Northern Rockies
(all of W Montana)

summit den Mean number of mountain peaks per square mile within 10 miles of
each quarter section

pcinc Mean per capita income in 2000 in each quarter section
pop dens Mean population density per square mile in 2000 in each quarter section

ap tt Mean travel time in minutes to the nearest town with large commercial
airport from each quarter section

town tt Mean travel time in minutes to the nearest town from each
quarter section

x coord X coordinate of quarter section centroid, in meters, State Plane
Coordinate System 1983

y coord Y coordinate of quarter section centroid, in meters, State Plane
Coordinate System 1983
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Table 2: Means and standard deviations used to standardize variables in preparation for modeling.

Variable Mean Standard Dev.

homes 0.9277 12.9928
homes8yr 0.1398 2.2850
homes 1mi 3.7854 35.7437
home8yr1mi 0.5663 5.2460
water dist 12438.1609 10912.3369
rd dens 0.9154 1.3298
mjrd dist 7252.6585 6914.3259
summit den 0.0047 0.0103
pcinc 15639.7070 3029.9990
pop dens 10.8174 329.7255
ap tt 163.1384 102.5372
town tt 61.2857 42.8334
x coord 643273.0600 226175.2461
y coord 315260.3681 125141.6184
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Table 3: Standardized coefficients, standard errors, and cross-validation score (MSPE) for the 4 primary
house models. Standardized coefficients result from fitting variables that have been standardized using
the appropriate mean and variance contained in Table 2.

Linear Log-linear GLM ZIP
Variable Coef SE Coef SE Coef SE Coef SE

(Intercept) 0.1700 0.0086 0.0233 0.0006 -6.7110 0.0295 -2.5683 0.0426
ap tt -0.7494 0.0133 -0.6858 0.0142
ecoregionN Rockies -0.0656 0.0173 0.0365 0.0013 0.6767 0.0208 0.3648 0.0234
ecoregionNW Plains -0.0045 0.0109 0.0193 0.0008 0.6755 0.0206 0.4843 0.0234
home8yr1mi 1.5803 0.0057 0.0968 0.0004 0.0457 0.0003 0.0390 0.0002
homes 1mi -0.0776 0.0068 0.0295 0.0005 0.0006 0.0016
mjrd dist -0.0036 0.0004 0.0889 0.0139 0.1474 0.0144
pcinc 0.0211 0.0049 0.0100 0.0004 0.1163 0.0025 0.0905 0.0027
pop dens -0.0192 0.0049 -0.0053 0.0004 -0.1405 0.0030 -0.1207 0.0023
rd dens 0.0735 0.0072 0.0381 0.0005 0.2743 0.0026 0.2012 0.0021
summit den -0.0116 0.0058 0.0008 0.0004 0.0298 0.0039 0.0421 0.0041
town tt 0.0317 0.0055 -0.0052 0.0005 -3.3033 0.0247 -1.4771 0.0313
water dist -0.0049 0.0004 -0.4787 0.0114 -0.3754 0.0114

MSPE 2.1571 22.7008 1.7871 2.0412
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Figure 1: Observed number of homes built between 2000 and 2008 (i.e., homeschg) for all quarter
sections in Montana.
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(a) Linear model. (b) Log-linear model.

(c) GLM. (d) ZIP model.

Figure 2: Predictions of homes built between 2000 and 2008 by the 4 primary model types in an area
around Bozeman, MT.
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Figure 3: Predicted number of homes to be built between 2008 and 2016 in Montana based on the final
linear model.
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Figure 4: Predicted acceleration (dark purple; 1) or deceleration (tan; −1) in number of homes built
between 2008 and 2016 in an area surrounding Bozeman, MT based on the final linear model. Light
purple (0) are areas predicted to have steady growth between 2000-2008 and 2008-2016. Many of these
(light purple) areas did not experience any growth in 2000-2008 and are not predicted to experience any
growth during 2008-2016. Quarter sections that contain no private lands are shown in gray.
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Appendix A: R code

#
# Read headwate r s data and p r o c e s s to r eady i t f o r mode l ing .
# load data
dat . f u l l <− read . csv ( ”C:\\ U s e r s \\ t r e n t \\Documents\\ P r o j e c t s \\Headwaters

\\ rawdata \\ d e v e l o p m e n t f o r e c a s t 2 . c s v ” , h e a d e r=T)
# The m i s s i n g v a l u e s f o r homes 1mi and homes8yr1mi shou ld be z e r o s
# per ema i l from Patty 4 Aug .
# Her ema i l :
# h i t r e n t & da r r en . when you r e r un model s e l e c t i o n , p l e a s e do i n c l u d e
# the homes 1mi & homes8yr1mi v a r i a b l e s . i unde r s tand you dropped them
# because 61.4% o f the r e c o r d s were n u l l , but t h e s e shou ld be z e r o s .
# i ’ ve i n v e s t i g a t e d & the n u l l s a r e a r e s u l t o f the way we c a l c u l a t e d
# the s e v a r i a b l e s i n GIS , but they t r u l y a r e z e r o s . −pa t t y
dat . f u l l $homes 1mi [ i s . na ( dat . f u l l $homes 1mi ) ] <− 0
dat . f u l l $home8yr1mi [ i s . na ( dat . f u l l $home8yr1mi ) ] <− 0
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Mis s i ng v a l u e s
# d e f a u l t summary method . Computes number o f m i s s i n g v a l u e s
summary( dat . f u l l )
# Note tha t a ma j o r i t y o f Easement i s m i s s i n g .
# a l s o , a few o f the water d i s t , rd dens , mjrd d i s t , summit dens , pc inc ,
# pop dens , apt t t , and town t t a r e m i s s i n g
# Below we see tha t the few m i s s i n g c o v a r i a t e s a r e sub s e t t ed , and on l y
# c o n s i s t o f 277 ob s e r v a t i o n s ,
## 277 m i s s i n g from the same o b s e r v a t i o n s
g1 <− which ( i s . na ( dat . f u l l $ p c i n c ) )
g2 <− which ( i s . na ( dat . f u l l $pop dens ) )
## 274 m i s s i n g from the same o b s e r v a t i o n s
g3 <− which ( i s . na ( dat . f u l l $mjrd d i s t ) )
g4 <− which ( i s . na ( dat . f u l l $ rd dens ) )
g5 <− which ( i s . na ( dat . f u l l $ap t t ) )
p r i n t (sum( g4 !=g3 ) ) ## = 0
p r i n t (sum( g4 !=g5 ) ) ## = 0
## othe r m i s s i n g c o v a r i a t e s . I f t h e s e a r e m i s s i ng , then the above a r e a l s o
## mi s s i n g
g6 <− which ( i s . na ( dat . f u l l $ water d i s t ) )
g7<− which ( i s . na ( dat . f u l l $town t t ) )
g8 <− which ( i s . na ( dat . f u l l $summit den ) )
# check i ng s u b s e t s . Th i s v e r i f i e s t ha t rows wi th m i s s i n g
# va l u e s a r e s ub s e t o f t ho s e i n g1 ( and g2 ) .
cat ( ” A l l t h e s e numbers s h o u l d be 0 :\ n” )
p r i n t (sum( g2 !=g1 ) ) ## i s 0 , means g1 and g2 a r e same rows
p r i n t (sum( ! ( g3 %i n% g1 ) ) )
p r i n t (sum( ! ( g4 %i n% g1 ) ) )
p r i n t (sum( ! ( g5 %i n% g1 ) ) )
p r i n t (sum( ! ( g6 %i n% g1 ) ) )
p r i n t (sum( ! ( g7 %i n% g1 ) ) )
p r i n t (sum( ! ( g8 %i n% g1 ) ) )

14



# A l l the above a r e 0 , i m p l i e s a l l m i s s i n g rows a r e s ub s e t o f tho s e l i s t e d i n g2
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# update data f rame by removing Easement and the rows i d e n t i f i e d i n g1
# remove m i s s i n g rows
dat <− dat . f u l l [−g1 , ]
# remove Easement ,
dat <− dat [ ,−which ( names ( dat ) %i n% c ( ” Easement ” ) ) ]
# Clean up . C a r e f u l : t h i s e r a s e s e v e r y t h i n g but dat and dat . f u l l
#remove ( l i s t= l s ( ) [ ! ( l s ( ) %i n% c (” dat ” , ” dat . f u l l ” ) ) ] )
cat ( ” F i n a l d i m e s i o n o f data frame i s :\ n” )
p r i n t ( dim ( dat ) )
save . image ( ” Headwaters raw . RData” )
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# put c o v a r i a t e s on the same s c a l e f o r mode l ing
c o v a r s <− c ( ”homes” , ” homes8yr ” , ”homes 1mi” , ” home8yr1mi ” ,

” water d i s t ” , ” rd dens ” , ” mjrd d i s t ” ,
” summit den ” , ” p c i n c ” , ”pop dens ” , ”ap t t ” , ”town t t ” ,
”x coord ” , ” y coord ” )

d e s c . s t a t s <− cbind ( colMeans ( dat [ , c o v a r s ] ) , apply ( dat [ , c o v a r s ] , 2 , sd ) )
f o r ( j i n c o v a r s ){

i f ( j != ” e c o r e g i o n ” ){
i n d <− row . names ( d e s c . s t a t s ) == j
dat [ , j ] <− ( dat [ , j ] − d e s c . s t a t s [ ind , 1 ] ) / d e s c . s t a t s [ ind , 2 ]

}
}
# make f a c t o r c o va r s .
dat $ e c o r e g i o n <− f a c t o r ( dat $ e c o r e g i o n , l e v e l s=c ( 1 , 2 , 3 ) ,

l a b e l s=c ( ”NW G l a c a t e d ” , ”NW P l a i n s ” , ”N R o c k i e s ” ) )
# compute l o g homeschg
dat $ log . homeschg <− log ( dat $homeschg + 1 )
save ( dat , d e s c . s t a t s , f i l e=” dat . Rdata ” )

# Model e s t ima t i o n f o r Headwater Economics hous ing deve lopment
# p r o j e c t .
#
# Trent McDonald − 23Sep10
#
# Inpu t :
# dat = the data frame c o n t a i n i n g a l l c o v a r i a t e s and the r e s pon s e
#
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F . lm . model <− funct ion ( f i t . dat=dat ){
#
# F i t a normal l i n e a r model to dat .
#
f f <− homeschg˜homes 1mi + home8yr1mi + water d i s t + rd dens +

mjrd d i s t + e c o r e g i o n + summit den + p c i n c + pop dens +
ap t t + town t t

g . lm <− lm ( f f , data= f i t . dat )
g . lm <− step ( g . lm ) # backward e l i m i n a t i o n u s i n g AIC
cat ( ” F i n a l l i n e a r model :\ n” )
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p r i n t ( summary( g . lm ) )
g . lm
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F . l o g l m . model <− funct ion ( f i t . dat=dat ){
#
# F i t a l o g normal l i n e a r model to dat .
#
f i t . dat $ log . homeschg <− log ( f i t . dat $homeschg + 1 )
f f <− log . homeschg˜homes 1mi + home8yr1mi + water d i s t + rd dens +

mjrd d i s t + e c o r e g i o n + summit den + p c i n c + pop dens + ap t t + town t t
g . lm <− lm ( f f , data= f i t . dat )
g . lm <− step ( g . lm ) # backward e l i m i n a t i o n u s i n g AIC
cat ( ” F i n a l l o g l i n e a r model :\ n” )
p r i n t ( summary( g . lm ) )
g . lm
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F . glm . model <− funct ion ( f i t . dat=dat ){
#
# F i t a g e n e r a l i z e d ( Po i s son ) l i n e a r model to dat .
#
f f <− homeschg˜homes 1mi + home8yr1mi + water d i s t + rd dens + mjrd d i s t +

e c o r e g i o n + summit den + p c i n c + pop dens + ap t t + town t t
g . lm <− glm ( f f , data= f i t . dat , fami ly=poisson )
g . lm <− step ( g . lm ) # backward e l i m i n a t i o n u s i n g AIC
cat ( ” F i n a l P o i s s o n l i n e a r model :\ n” )
p r i n t ( summary( g . lm ) )
g . lm
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F . z ip . model <− funct ion ( f i t . dat=dat ){
#
# F i t a Zero i n f l a t e d Po i s son model
#
l i b r a r y ( p s c l )
g . z ip <− z e r o i n f l ( homeschg ˜ home8yr1mi + water d i s t + rd dens +

mjrd d i s t + e c o r e g i o n + summit den + p c i n c + pop dens + ap t t +
town t t | home8yr1mi + town tt ,
data = dat , d i s t=” p o i s s o n ” , l i n k=” l o g i t ” )

cat ( ” F i n a l Z ip model :\ n” )
p r i n t ( summary( g . z ip ) )
g . z ip
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F . s c o r e . model <− funct ion (mod , data = dat , y=” homeschg ” , e x c l u d e =20,

c o s t = funct ion ( y , yhat ) mean ( ( y − yhat ) ˆ 2 ) , K = n ,
i l i n k =funct ion ( x ){ x }){

#
# sco r e the model u s i n g k−f o l d c r o s s−v a l i d a t i o n
#
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# Inpu t s :
# mod = a f i t t e d model o b j e c t
# data = f i t t i n g data frame .
# y = re spon s e v a r i a b l e i n data
# ex l ud e = va l u e o f r e sponse , above which we e x c l ud e when we c a l c u l a t e s c o r e
# co s t = f u n c t i o n to computed on p r e d i c t i o n s measur ing ” c l o s e n e s s ” o f
# p r e d i c t e d v a l u e s to o b s e r v a t i o n s
# K = number o f equa l s i z e d ” f o l d s ” to use f o r v a l i d a t i o n
# i l i n k = the i n v e r s e l i n k f u n c t i o n
#
# This code was l a r g e l y p l a g e r i z e d from l i b r a r y ( boot ) r o u t i n e cv . glm
n <− nrow ( data )
out <− NULL
i f ( (K > n ) | | (K <= 1 ) )

stop ( ”K o u t s i d e a l l o w a b l e ra ng e ” )
K. o <− K
K <− round (K)
k v a l s <− unique ( round ( n/ ( 1 : f l o o r ( n/ 2 ) ) ) )
temp <− abs ( k v a l s − K)
i f ( ! any ( temp == 0 ) )

K <− k v a l s [ temp == min ( temp ) ] [ 1 L ]
i f (K != K. o )

warning ( ”K has been s e t to ” , K)
cat ( paste ( ”K s e t to ” , K, ”\n” ) )
f <− c e i l i n g ( n/K)
s <− sample ( rep ( 1 : K, f ) , n ) # A permuta t i on o f 1 :K rep−ed f t imes
n . s <− tab le ( s )
glm . y <− data [ , y ] # re spon s e v e c t o r
i n d <− glm . y <= e x c l u d e
ms <− max( s )
CV <− V <− 0
f o r ( i i n 1 : ms) {

cat ( paste ( ”−−−− Fold ” , i , ”\n” ) )
j . out <− c ( 1 : n ) [ s == i ]
j . i n <− c ( 1 : n ) [ s != i ]
data . i n <− data [ j . in , ]
d . glm <− update ( mod , data=data . i n )
i n d . i <− glm . y [ j . out ] <= e x c l u d e
p . a l p h a <− sum( i n d . i ) / (sum( i n d ) )
mu . hat <− p r e d i c t ( d . glm , data [ j . out , , drop = FALSE ] , t y p e = ” r e s p o n s e ” )
mu . hat <− i l i n k (mu . hat )
mu . hat [ mu . hat < 0 ] <− 0 # nega t i v e p r e d i c t i o n s p o s s i b l e w i th i d e n t i t y l i n k .
c o s t . i <− c o s t ( glm . y [ j . out ] [ i n d . i ] , mu . hat [ i n d . i ] )
sep . i <− var ( mu . hat [ i n d . i ] )
CV <− CV + p . a l p h a ∗ c o s t . i
V <− V + p . a l p h a ∗ (sum( i n d . i ) − 1) ∗ sep . i / sum( i n d . i )
cat ( paste ( ”\ t ” , c ( ”p . a l p h a=” , ”CV=” , ” V=” ) , c ( p . a lpha , c o s t . i ,

sep . i ∗ (sum( i n d . i )−1)/sum( i n d . i ) ) , ”\n” ) )
}
out <− l i s t (K = K, cv = CV, v=V, s c o r e=CV + V)
cat ( ”\ nScore o f f i n a l model u s i n g c r o s s−v a l i d a t i o n :\ n” )
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cat ( paste ( ”\tMean s q u a r e c r o s s−v a l i d a t i o n p r e d i c t i o n e r r o r =” , CV, ”\n” ) )
cat ( paste ( ”\ t V a r i a n c e o f c r o s s−v a l i c a t i o n p r e d i c t i o n s =” , V, ”\n” ) )
cat ( paste ( ”\ t Score (CV + V) =” , CV + V, ”\n” ) )
out
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# A u t i l i t y f u n c t i o n to show s i z e o f o b j e c t s . The model o b j e c t s a r e
# HUGE, and i t s good to know t h e i r s i z e
F . o b j e c t . s i z e<−funct ion ( ){
rev ( s o r t ( sapply ( l s ( e n v i r =. G loba lEnv ) , funct ion ( x )

{ o b j e c t . s i z e ( get ( x , e n v i r =. G loba lEnv ) ) } ) ) )
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F . cut . s i z e <− funct ion ( x ){
#
# cut down the s i z e o f a mode l ing o b j e c t by e r a s i n g some components
# o f the model .
#
i f ( ” lm” %i n% c l a s s ( x ) ){

x$ r e s i d u a l s <− NULL
x$ f i t t e d . v a l u e s <− NULL
x$ e f f e c t s <− NULL
x$model <− NULL

}
i f ( ”glm” %i n% c l a s s ( x ) ){

x$ l i n e a r . p r e d i c t o r s <− NULL
x$weights <− NULL
x$ p r i o r . weights <− NULL
x$data <− NULL
x$y <− NULL

}
i f ( ” z e r o i n f l ” %i n% c l a s s ( x ) ){

x$ r e s i d u a l s <− NULL
x$ f i t t e d . v a l u e s <− NULL
x$y <− NULL

}
x
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Ca l l the above f u n c t i o n s to do e s t ima t i o n
#
# The l i n e a r model
g . lm <− F . lm . model ( )
g . lm . s c o r e <− F . s c o r e . model ( g . lm , dat , y=” homeschg ” , e x c l u d e = 20 ,

K=10, i l i n k =funct ion ( x ){ x })
g . lm <− F . cut . s i z e ( g . lm )

# The l og l i n e a r model
g . l o g l m <− F . l o g l m . model ( )
g . l o g l m . s c o r e <− F . s c o r e . model ( g . log lm , dat , y=” homeschg ” , e x c l u d e = 20 ,

K=10, i l i n k =funct ion ( x ){ exp ( x )} )
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g . l o g l m <− F . cut . s i z e ( g . l o g l m )

# The Po i s son model
g . glm <− F . glm . model ( )
g . glm . s c o r e <− F . s c o r e . model ( g . glm , dat , y=” homeschg ” , e x c l u d e = 20 ,

K=10, i l i n k =funct ion ( x ){ x} )
g . glm <− F . cut . s i z e ( g . glm )

# The ZIP model
g . z ip <− F . z ip . model ( )
g . z ip . s c o r e <− F . s c o r e . model ( g . zip , dat , y=” homeschg ” , e x c l u d e = 20 ,

K=10, i l i n k =funct ion ( x ){ x} )
g . z ip <− F . cut . s i z e ( g . z ip )

# Re s u l t s
ans <− data . frame ( model=c ( ” Normal ” , ”Log” , ”Glm” , ” Zip ” ) ,

s c o r e=c ( g . lm . s c o r e $ s c o r e , g . l o g l m . s c o r e $ s c o r e ,
g . glm . s c o r e $ s c o r e , g . z ip . s c o r e $ s c o r e ) )

p r i n t ( ans )

save . image ( f i l e=” Models . RData” )

#
# Read new ( updated ) headwate r s data prep i t f o r p r e d i c t i o n
#
# load data
new . dat <− read . csv ( ”C:\\ U s e r s \\ t r e n t \\Documents\\ P r o j e c t s \\

Headwaters \\ rawdata \\Homes2008data . c s v ” , h e a d e r=T)
new . dat $homes 1mi [ i s . na (new . dat $homes 1mi ) ] <− 0
new . dat $home8yr1mi [ i s . na (new . dat $home8yr1mi ) ] <− 0
cat ( paste ( ” O r i g i n a l number o f rows i n ’ new . dat ’ : ” , nrow (new . dat ) , ”\n” ) )
cat ( paste ( ” O r i g i n a l number o f rows i n ’ dat . f u l l ’ : ” , nrow ( dat . f u l l ) , ”\n” ) )
# Merge new home count s w i th o l d v a l u e s i n ’ dat ’
# F i r s t , drop the columns from ’ dat ’ t ha t w i l l be r e p l a c e d by data i n new . dat
dat . f u l l <− dat . f u l l [ , ! ( names ( dat . f u l l ) %i n% c ( ”homes 1mi” , ” home8yr1mi ” ) ) ]
new . dat <− merge (new . dat , dat . f u l l , by=”PLSS” , a l l=T)
# Check ing . . .
cat ( paste ( ”New number o f rows i n ’ new . dat ’ : ” , nrow (new . dat ) , ”\n” ) )
cat ( paste ( ”Number o f rows i n ’ new . dat ’ , not i n ’ dat . f u l l ’ : ” ,

sum( i s . na (new . dat $homeschg ) ) , ”\n” ) )
cat ( paste ( ”Number o f rows i n ’ dat . f u l l ’ , not i n ’ new . dat ’ : ” ,

sum( i s . na (new . dat $home8yr1mi ) ) , ”\n” ) )
# Sca l e the v a r i a b l e s as we d id f o r f i t t i n g .
# S c a l i n g means and std ’ s must be i n desc . s t a t s .
f o r ( j i n c o v a r s ){

i f ( j != ” e c o r e g i o n ” ){
i n d <− row . names ( d e s c . s t a t s ) == j
new . dat [ , j ] <− (new . dat [ , j ] − d e s c . s t a t s [ ind , 1 ] ) / d e s c . s t a t s [ ind , 2 ]

}
}
## make f a c t o r c o v a r s .
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new . dat $ e c o r e g i o n <− f a c t o r (new . dat $ e c o r e g i o n , l e v e l s=c ( 1 , 2 , 3 ) ,
l a b e l s=c ( ”NW G l a c a t e d ” , ”NW P l a i n s ” , ”N R o c k i e s ” ) )

save ( new . dat , f i l e=”new dat . RData” )

#
# R Code used to p r e d i c t f u t u r e growth , compute l owe r p r e d i c t i o n l i m i t s ,
# and a c c e l e r a t i o n s
#
# Trent McDonald , 23Sep10
#
F . p r e d i c t . model <− funct ion (mod , new . data , i l i n k =funct ion ( x ){ x }){
#
# Pr ed i c t model r e s p on s e s
#
mu . hat <− p r e d i c t (mod , new . data , t y p e = ” r e s p o n s e ” )
mu . hat <− i l i n k (mu . hat )
mu . hat [ mu . hat < 0 ] <− 0
as . data . frame ( l i s t ( PLSS = new . data$PLSS , p r e d i c t e d = mu . hat ) )
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F . output <−funct ion ( df , f i l e ){
#
# Output the p r e d i c t e d v a l u e s f o r p l o t t i n g
write . tab le ( df , f i l e , sep=” , ” , co l . names=T, row . names=F )
}
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Because we e r a s ed some s t u f f from the models , to cut down s i z e , we
# must re−e s t ima t e models
#
# dat and dat . new have d i f f e r e n t d imens i on s because 277 rows wi th
# m i s s i n g v a l u e s were d e l e t e d from dat . See read data . r
# This makes p r e d i c t i o n s u s i n g dat and new . dat d i f f e r e n t s i z e s
#load ( ” dat . Rdata” )
#load ( ”new dat . Rdata” )
l i b r a r y ( p s c l )
tmp <− g . lm
g . lm <− update ( g . lm , data= dat )
pred <− F . p r e d i c t . model ( g . lm , dat )
# −− These a r e p r e d i c t i o n s o f pa s t growth
F . output ( pred , ” Pred lm v2 . c s v ” )
# −− Future p r e d i c t e d v a l u e s and o th e r t h i n g s f o r the LM model
# Use 0 .9 f o r c o n f i d e n c e i n next s ta t emetn to ge t 0 .95 one−s i d e d i n t e r v a l s
pred1 <− as . data . frame ( p r e d i c t ( g . lm , new . dat ,

i n t e r v a l=” p r e d i c t i o n ” , l e v e l =0.9 , t y p e = ” r e s p o n s e ” ) )
pred1 <− pred1 [ , c ( ” f i t ” , ” l w r ” ) ] # drop upper l i m i t
pred1 $ f i t [ p red1 $ f i t < 0 ] <− 0
pred1 $ l w r [ pred1 $ l w r < 0 ] <− 0
pred1 <− data . frame ( PLSS = new . dat $PLSS , pred1 , s t r i n g s A s F a c t o r s=F )
# −− Merge so we can compute d i f f e r e n c e s
names ( pred ) [ names ( pred ) == ” p r e d i c t e d ” ] <− ” p a s t . p r e d i c t e d ”
names ( pred1 ) [ names ( pred1 ) == ” f i t ” ] <− ” f u t u r e . p r e d i c t e d ”
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names ( pred1 ) [ names ( pred1 ) == ” l w r ” ] <− ” f u t u r e . low95 ”
pred1 $ s u r e . growth <− as . numeric ( pred1 $ f u t u r e . low95 > 0 )
tmp <− merge ( pred , pred1 , by=”PLSS” )
tmp$ growth . r a t e <− tmp$ f u t u r e . p r e d i c t e d − tmp$ p a s t . p r e d i c t e d
tmp$ growth . r a t e [ abs ( tmp$ growth . r a t e ) < 0.00001 ] <− 0 # Zeros out numbers l i k e 1e−16.
tmp$ posneg . r a t e <− tmp$ growth . r a t e
tmp$ posneg . r a t e [ tmp$ growth . r a t e > 0 . 0 1 ] <− 1
tmp$ posneg . r a t e [ −0.01 <= tmp$ growth . r a t e & tmp$ growth . r a t e <= 0 . 0 1 ] <− 0
tmp$ posneg . r a t e [ tmp$ growth . r a t e < −0.01 ] <− −1
# −− Merge i n ob s e r v ed v a l u e s
tmp2 <− dat [ , c ( ”PLSS” , ” homeschg ” ) ]
tmp <− merge ( tmp , tmp2 , by=”PLSS” )
F . output ( tmp , ” P a s t F u t u r e lm v1 . c s v ” )
# −−−−−−−−−−−−−−−−−−−−−
tmp <− g . l o g l m
g . l o g l m <− update ( g . log lm , data= dat )
p r i n t ( rb ind ( g . l o g l m $ coef , tmp$ coef ) )
pred <− F . p r e d i c t . model ( g . log lm , dat , funct ion ( x ){ exp ( x ) − 1} )
F . output ( pred , ” Pred l o g l m v2 . c s v ” )
# −−−−−−−−−−−−−−−−−−−−−
tmp <− g . glm
g . glm <− update ( g . glm , data= dat )
p r i n t ( rb ind ( g . glm$ coef , tmp$ coef ) )
pred <− F . p r e d i c t . model ( g . glm , dat )
F . output ( pred , ” Pred glm v2 . c s v ” )
# −−−−−−−−−−−−−−−−−−−−−
tmp <− g . z ip
g . z ip <− update ( g . zip , data= dat )
p r i n t ( rb ind ( g . z ip $ coef , tmp$ coef ) )
# −−−−−−−−−−−−−−−−−−−−−
pred <− F . p r e d i c t . model ( g . zip , dat )
F . output ( pred , ” Pred z i p v2 . c s v ” )
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