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A B S T R A C T   

Conventionally, forest management plans have focused on ensuring a continuous provision of wood. In recent 
years, political agendas worldwide have recognized the importance of forests’ cultural ecosystem services, such 
as recreation. However, the inclusion of such values in management plans is challenging, and forest managers 
require novel methodologies and indicators to characterize forest recreation demand and provision. To this end, 
in this study, we combine remote sensing technologies and crowdsourced social media data to map and value the 
forest recreational potential of BC’s provincial parks system. We trained and deployed convolutional neural 
networks to automatically classify the content of over 60,000 Flickr images, we then created a random forest 
model to identify the variables that influence the visitors’ choice of recreational activity. These models allowed 
us to map the most likely recreational activities to occur in BC’s provincial parks and perform a spatially explicit 
assessment of the consumer surplus that these activities generate with a benefit transfer approach. Our findings 
suggest that the most influential variables in determining the choice of forest recreational activities are topo-
graphic, while anthropogenic impacts and forest biometrics variables have less effect. Furthermore, the outcomes 
of our study support the proposition that the integration of social media and remote sensing technologies allow, 
in the future, park managers to tailor the management of recreational services to forest visitors’ needs.   

1. Introduction 

Following the industrial revolution humans have become, and still 
are, the main cause of forest cover loss (Ritchie and Roser, 2021). In 
response to this phenomenon, sustainable forest management plans 
have been developed to secure a continuous provision of wood for 
current and future generations. More recently, the focus is shifting from 
management plans being solely driven by timber needs, towards 
ensuring the seamless provision of all the ecosystem services that forests 
provide (Ritter and Dauksta, 2013). In particular, forests’ cultural 
ecosystem services (CES) are of recognized growing importance world-
wide, and in the last decade, an average of over 186,000 ha of the world 
forests have been allocated for recreation, tourism, and education every 
year (FAO, 2020). 

However, the inclusion of CES in forest management plans has 
inherent challenges: CES are troublesome to quantify (Bettinger et al., 
2016), map (Termansen et al., 2013), and, given their nature of 
nonmarket goods, value (Paracchini et al., 2014). Traditionally, the 

study of forest CES has been undertaken with the use of on-situ surveys 
(Pleasant et al., 2014), interviews (Plieninger et al., 2013), or working 
with focus groups (Norton et al., 2012). Among these traditional ap-
proaches, the public participatory GIS (PPGIS) is a framework that has 
been applied numerous times to map forest cultural ecosystem services. 
PPGIS uses geospatial technologies to promote the participation of 
marginalized populations in the decision-making process regarding 
ecosystem services management (Brown, 2017). In particular, PPGIS 
aims to provide an alternative to the economic-based valuation of 
ecosystem services that some authors -e.g. Potschin and Haines-Young 
(2013)- argue that it provides a more faithful representation of natural 
capital. These methods are useful for capturing detailed information on 
CES, however, they also have two major limitations that hinder their 
application in forest management planning. First, traditional methods of 
CES characterization are expensive and time-consuming to undertake 
and second, they can only be applied across small study areas (Richards 
and Tunçer, 2018).To tackle these limitations, researchers have turned 
their attention to novel data sources, and most recently to the use of 
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crowdsourced social media data (Ghermandi and Sinclair, 2019). 
Crowdsourced social media data are digital data (text, images, video, 

etc.) that are shared by social media users, and then retrieved by re-
searchers via social media application programming interfaces (API). 
Analyses of the metadata of geotagged social media images have been 
undertaken across various ecosystems around the world for differing 
objectives including (i) identifying temporal trends and hotspots of 
recreational activities (Schirpke et al., 2018), (ii) estimating the number 
of visits into natural areas (Tenkanen et al., 2017), and (iii) assessing the 
monetary value of recreational sites (Ghermandi, 2018; Sinclair et al., 
2018). These studies have demonstrated how social media image met-
adata can provide valuable quantitative information for CES manage-
ment. However, metadata alone cannot shed light on the reasons why 
people choose to visit an area or the activities that recreationists carry 
out. To answer these qualitative questions, researchers have adopted 
two strategies. The first is the integration of crowdsourced images 
metadata and remote sensing technologies data, and the second is the 
inspection of social media crowdsourced images content. 

Remote sensing technologies provide information about the physical 
characteristics of the Earth’s surface. The integration of crowdsourced 
social media data with remote sensing data is becoming more 
commonplace in the study of forest CES. For example, Bernetti et al. 
(2019) used the metadata of Flickr images to investigate the relationship 
between forest and topographic variables, obtained via various remote 
sensing technologies, and picture density in Tuscany (Italy). Similarly, 
Ciesielski et al. (2021) used Flickr data and boosted regression tree 
models to determine which forest variables influenced picture acquisi-
tion. These variables were obtained by combining various sources 
including landcover (Hościło and Tomaszewska, 2014) and the Shuttle 
Radar Topography Mission (Rodriguez et al., 2006). Lastly, You et al. 
(2022) assessed the spatial–temporal dynamics of forest recreation 
values in the Zhejiang Province (China) integrating remote sensing data 
and text-mining of social media comments. In all the above studies, 
remote sensing technologies data were used to obtain topographic, so-
cioeconomic, and forest biometrics data coincident with the location 
(and in some cases time) the social media images were acquired, hence 
identifying which of these variables had a positive effect on forest 
recreation. 

To derive the activities occurring on the crowdsourced social media 
images, various techniques have also evolved. In early studies, analyses 
of social media images were conducted by visually inspecting, and 
manually classifying, the images based on the type of CES depicted in 
them (Pastur et al., 2016; Richards and Friess, 2015). However, this 
approach is tedious and time-consuming and therefore it cannot be 
easily applied to large study areas. Deep-learning, and in particular 
convolutional neural networks (CNN), offers a solution to this problem 
(Ghermandi et al., 2022). A CNN is a deep-learning neural network used 
to process structured data arrays, such as digital images. CNNs are 
currently considered the state of the art for automated image classifi-
cation (Howard and Gugger, 2020) and are increasingly being used in 
computer vision. CNNs are made of two essential components: an ar-
chitecture, and a set of weights. The architecture is the fixed structure of 
the CNN, composed of a variable number of interconnected layers. 
Weights are parameters (numbers), that are modified during the training 
process of the CNN. These numbers describe the strength of the con-
nections between the nodes composing the different layers. Even though 
to the best of our knowledge, studies that adopt pre-trained commercial 
CNN for characterizing specifically forest CES are still lacking, several 
authors have used such models (e.g. Clarifai and Google Cloud Vision) to 
classify images acquired in the natural landscape (e.g. (Havinga et al., 
2021; Payntar et al., 2021). Commercial pre-trained CNNs allow re-
searchers to save time, however, their use is not for free, and the cate-
gories that they can identify cannot be modified according to the 
researchers’ requirements. Transfer learning, a recent development of 
the deep learning field, is receiving a growing interest because it has the 
potential of tackling these limitations. Transfer learning allows 

researchers to adapt freely available pretrained CNNs, such as the ones 
trained on the ImageNet (Deng et al., 2009) and Places365 databases 
(Zhou et al., 2017), to new classification tasks. Recently, (Cardoso et al., 
2022; Lingua et al., 2022a) have used transfer-learning to create CNNs 
purposely designed for characterizing the CES provided by natural parks 
located in the Iberian Peninsula (Spain and Portugal) and British 
Columbia (Canada) respectively. The use of transfer learning appears to 
be a promising approach to obtain quick, inexpensive, and detailed data 
that could be useful for forest CES management. 

Despite the rapidly growing number of studies that use social media 
data for CES research, this discipline is still in its infancy, and its po-
tential to inform ecosystem management is not fully understood 
(Ghermandi and Sinclair, 2019). In particular little is known about how 
to transform the information that can be extracted from crowdsourced 
social media data into useful outputs for the inclusion of CES in 
ecosystem management plans. Furthermore, remote sensing data and 
the output of automated image content analysis have not often been 
combined before, and the potential of their integration is not been fully 
explored. The overarching objective of this study, therefore, is to address 
these knowledge gaps, developing a methodology to effectively inte-
grate CES in forest management plans, relying on remote sensing and 
crowdsourced social media data. To do so, geotagged social media im-
ages were downloaded and classified, using CNNs, based on the forest 
recreational activities depicted in them. The outcomes of the image 
classification process were then paired with their corresponding topo-
graphic, socioeconomic, and forest biometrics variables obtained using 
remote sensing technologies. Results provide insights into which rec-
reational activities are most popular in the observed forests and which 
natural and social attributes may potentially drive their popularity. 
Maps of the recreational potential of forests as well as of forest recrea-
tion economic value are produced and the limitations and future per-
spectives of our approach are discussed. 

2. Methods 

2.1. Study area 

The forested land within British Columbia’s (BC) provincial park 
system (Fig. 1) covers approximately 68,000 km2 (~7% of the entire 
Province), from temperate rainforests to alpine tundra biomes, and 
provides a wide array of ecosystem services. Among these, recreation 
plays an important role with BC parks offering 6000 km of hiking trails, 
and over 10,000 vehicle-accessible campsites, and are visited by more 
than 20 million recreationists annually. 

2.2. Data and methods 

The methodology applied in this study covers five main steps. First, 
the geotagged images acquired across BC forested parks were down-
loaded from Flickr’s API. Second, the images were classified and filtered 
based on the recreational activities depicted in them, using convolu-
tional neural networks (CNNs). Third, each relevant image were 
attributed, based on its geographic coordinates: topography (slope and 
elevation), forest biometrics (canopy height, forest cover, gross stem 
volume, total biomass), and anthropogenic impacts (global human in-
fluence index) variables. The global human influence index (GHII) is a 
numerical index ranging from 1 (no anthropic impacts) to 44 (maximum 
anthropic impacts), that synthesize information from different sources 
(taking into account the human population pressure, land use, the 
presence of infrastructure, and human access). GHII (Wildlife Conser-
vation Society, 2005) and provides a map of anthropogenic impacts at 1 
km2 resolution. Fourth, a random forest classifier model was trained to 
identify the most likely forest recreational activity to occur in an area, 
based on the above-mentioned variables. Finally, two types of maps 
were produced, recreational potential maps and recreational value 
maps. The recreational potential maps were created using a random 
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forest classifier model to predict the most suitable recreational activity 
for points regularly distributed in a grid with a spacing of 0.005 km. The 
recreational value maps were created by applying a crowdsourced 
benefit transfer approach. In the following sections, further information 
on each of these steps will be provided. 

2.3. Image gathering 

The images used in this study were downloaded from Flickr’s API. 
Flickr is the most frequently used social media website in the study of 
CES, because it has an easily accessible API, and it offers the longest time 
series (Ghermandi and Sinclair, 2019). Images from Flickr were down-
loaded, using a purposely designed Python application, for two different 
objectives: (i) to explore the CES provided by the BC forested parks, and 
(ii) to train the CNN used in the image classification process. 

Images used for CES exploration were obtained by downloading all 
the geotagged images acquired in BC between 2005-1-1 and 2020-12- 
31, together with their metadata. The metadata included: (i) image 
identification code; (ii) author identification code; (iii) date on which the 
image was taken; (iv) coordinates of where the image was taken. 

The images used for the CNN training were obtained by combining 
the tags and bbox arguments of the “flickr.photos.search” function of 
Flickr’s API. The tags argument allows the user of Flickr’s API to query 
for images that were tagged with specific words by the author, the bbox 

argument allows the user of Flickr’s API to query for images that were 
acquired in a minimum bounding box specifying its coordinates. The 
tags used are reported in the supplementary material (Table A1), with 
the coordinate bounding box (49.0 N, − 114.0 E; 60.0 N, − 70.0 E). 

2.4. Image classification 

The image classification process applied in this study makes use of 
three CNNs: the relevance CNN, the cultural ecosystem services CNN, and 
the recreational CNN. All three CNNs used the ResNet-152 architecture 
(He et al., 2016), a residual neural network architecture, 152 layers 
deep, that employs residual learning units. The relevance CNN was 
ResNet-152, trained by Zhou et al. (2017) on the Places365 database. 
Instead, the cultural ecosystem services CNN and the recreation CNN were 
purposely created by adopting a transfer learning approach. Transfer 
learning is an innovative methodology of the deep learning field that 
allows for the training of state-of-the-art CNN even when only a small 
training set is available (Howard and Gugger, 2020). The general idea of 
transfer learning is to fine-tune existing CNN to adapt it to a new clas-
sification task (Torrey and Shavlik, 2010). To do so, the last layers of the 
original CNN are discarded and replaced by new layers designed for the 
intended classification task. Lastly, the modified CNN was re-trained 
with a training set of images opportunely selected. In this study the 
CNN used as a starting point for the benefit transfer approach was 

Fig. 1. Map of the study area, forests protected by the BC provincial park system. Pictures in the bottom left corner are a sample of the ones included in the study.  
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ResNet-152 trained on the ImageNet database (Deng et al., 2009). 
The image classification process can be summarized in the following 

steps. First, each image was fed into the relevance CNN which was 
divided into two classes: relevant images and not-relevant images. Then 
each relevant image was fed into the cultural ecosystem service CNN, 
which classified the images into two classes: aesthetic ecosystem service 
and recreational ecosystem service. Lastly, the images classified as 
belonging to the recreational ecosystem services class were fed into the 
recreational CNN, to assign the following activities: skiing, hiking, 
camping, wildlife viewing, and biking. To account for the fact that 
among the gathered images there were also depicted scenes that did not 
belong to the above-mentioned categories, all the images classified by 
the three CNN with a confidence lower than 75% were excluded from 
the analyses. 

To evaluate the performances of the image classification process, the 
following metrics were used: (i) accuracy (ii) precision; (iii) recall; (iv) 
F1-score (harmonic mean of precision and recall). These metrics were 
estimated on a randomly selected subset of 1,000 images. 

2.5. Relevance CNN 

The relevance CNN consists of the ResNet-152 architecture (He et al., 
2016), pre-trained on the Places365 database. Places365 is an image 
database containing over 1.8 million classified images from 365 scene 
categories (e.g. rainforest, pier, restaurant, etc.) that belong to three 
macro-categories: indoor, nature, and urban. The relevance CNN was 
used to assess if images were relevant in the context of CES research. 
Images tagged with classes belonging to the nature category were clas-
sified as “relevant”, while images tagged with classes belonging to the 
indoor and urban categories were classified as “not relevant”. The im-
ages classified as relevant were then fed into the cultural ecosystem service 
CNN. 

2.6. Cultural ecosystem services CNN 

The cultural ecosystem services CNN uses the ResNet-152 architecture, 
pre-trained on the ImageNet database as a starting point, but this time 
the transfer learning approach is applied to adapt it to classify images in 
aesthetic and recreational. To do so a database, composed of 7,000 
images (3,500 depicting aesthetic experiences and 3,500 depicting 
recreational experiences) was used. This database was created using ad- 
hoc training images obtained using the tags and bbox arguments of the 
“flickr.photos.search” function of the Flickr API. 

The distinction between aesthetic and recreation experience adopted 
in this study broadly follows the one introduced by Richards and Friess 
(2015) between “Landscape” and “Social Recreation”: In the aesthetic 
category, were included: (i) pictures depicting natural landscapes and 
skyscapes (ii) pictures depicting vegetation; (iii) pictures depicting nat-
ural features (e.g. mountains, lakes, streams, waterfalls, etc.). In the 
recreation category, were included: (i) pictures depicting people 
engaging in recreational activities; (ii) pictures depicting equipment 
related to recreational activities, but not people; (iii) pictures depicting 
wildlife and wildlife viewing equipment. 

2.7. Recreation CNN 

The recreation CNN uses the ResNet-152 architecture, trained on an 
image database composed of 3,500 pictures depicting various forest 
recreational activities. Again these training images were downloaded by 
combining the tags argument and bbox argument of the “flickr.photos. 
search” function of the Flickr’s API. The recreational activities that were 
considered are the following: hiking, skiing, camping, biking, and 
wildlife viewing; the training set contained 700 images for each activity. 
The list of forest recreational activities was obtained by adapting the one 
from Rosenberger et al. (2017). The “hiking” category includes all the 
images depicting people hiking or posing in nature; the “skiing” 

category includes people skiing or skiing equipment; the “camping” 
category includes people camping or camping equipment; the “biking” 
category includes people biking or biking equipment; the “wildlife 
viewing” category includes images depicting wildlife in its natural 
habitat or wildlife viewing equipment. 

2.8. Variables attribution and remote sensing technologies data 

To assign to each image its corresponding topographic, anthropo-
genic impacts, and forest biometrics variables, the Python package 
“rasterstats” (https://pythonhosted.org/rasterstats/) was used. The 
temporal variable was directly extracted from the metadata of the 
image. 

Topographic data have previously been found to influence the pro-
vision of forest recreation (e.g. (Roovers et al., 2002); (Abildtrup et al., 
2013). In particular two topographic variables were used in this study: 
elevation and slope both derived from the Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER) digital elevation 
model (GDEM V2, 30 m) (Tachikawa et al., 2011). 

Several authors have shown the impacts that forest biometrics data 
have on forest recreation (e.g. (Agimass et al., 2018; Carvalho-Ribeiro 
and Lovett, 2011). To examine the influence of forest biophysical con-
ditions on the provision of ecosystem services, we used four continuous 
wall-to-wall, 30-m forest structure metrics: (i.e., Lorey’s height, basal 
area, volume, and above-ground biomass) based on annual composites 
of Landsat satellite imagery using the imputation method described in 
Matasci et al. (2018a,b). This method used airborne laser scanning (ALS) 
and field plot data to estimate forest structure metrics from topographic 
and the Landsat spectral predictors, using a k-Nearest Neighbor 
approach. In their work, the authors used a predictive modeling 
approach to map forest attributes in Canada’s boreal forests. The model 
was calibrated using over 80,000 plots of a Canada-wide survey in which 
ALS was used to derive measurements of forest vertical structure. Spe-
cifically, the authors combined the forest structure variables surface 
reflectance composites derived from Landsat Thematic Mapper and 
Enhanced Thematic Mapper Plus imagery, obtaining r2 values ranging 
from 0.49 to 0.61. Lastly, previous studies conducted in the same study 
area have shown how forest recreation patterns are influenced by the 
passing of the seasons (Lingua et al., 2022; Lingua et al., 2022b). For this 
reason, an integer representing the day of the year in which the images 
were acquired was extracted from the metadata (1 for 1 January, 2 for 2 
January, etc.). 

2.9. The random forest classifier model 

A random forest classifier was used to identify if and how the inde-
pendent variables affect the use of forested areas for recreation purposes 
and assess the recreational potential for each forest recreational activity 
in Cypress park. The random forest model was created using the “Ran-
domForestClassifier” module of the scikit-learn library. 

To train the random forest classifier, the entire dataset of images 
depicting recreational activities was used. The dependent variable of the 
model was the five recreational activities identified by the recreation 
CNN (hiking, skiing, camping, biking, and wildlife viewing) while the 
independent variables were the topographic, forest biometrics, an-
thropic impact, and seasonal data previously illustrated. The dataset was 
divided randomly selecting 30% of the samples, used as a training set, 
while the remaining 70% was used as the validation set. The model 
included 30 fully-grown decision trees. 

To identify which variables influenced the outcome of the model the 
“feature_importances_” attribute of the “RandomForestClassifier” mod-
ule was used. The feature importance is the estimate of how much of the 
predicting power of the model is given by a variable and it is calculated 
as the decrease in node impurity weighted by the likelihood of reaching 
that node. The Gini impurity of a node can be defined as the likelihood of 
a random datum being misclassified if it were attributed to a random 
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class (according to the class distribution in the dataset). Gini impurity 
can be calculated using the following formula 

Giniimpurity =
∑C

i=1
fi(1 − fi)

Where fi is the frequency of label i at a node and C is the number of 
unique labels. 

To explore the relationship between the dependent variable and in-
dependent variables partial dependency plots were created. Partial de-
pendency plots show the marginal effect that a variable has on the 
outcome of the model. These plots were created for each recreational 
activity and variable pair. 

2.10. Mapping the recreational potential 

To demonstrate the potential of the method, the random forest 
classifier model was used to map the recreational potential of Cypress 
provincial park across the four seasons. Cypress park is one of the most 
visited provincial parks in BC (BC Parks statistics). 

To do so a grid of 200,000 regularly distributed points and a fishnet 
made of hexagonal cells of 1.5 ha each were created. First to each point 
were assigned the independent variables: elevation, slope, anthropic 
impact (GHII), canopy height, basal area, gross stem volume, and total 
biomass. To do so the Python module “rasterstats” was used (https 
://pythonhosted.org/rasterstats/). Second, the random forest classifier 
model described above was deployed to predict the probabilities for 
each forest recreational activity to be undertaken in each point for each 
season. Third, the probabilities estimated for points falling inside the 
same cell were averaged. Lastly, suitability maps for each recreational 
activity in each season were created based on the average probabilities 
estimated by the model in each cell. 

2.11. Mapping the value of recreation 

To estimate the monetary value of the recreational service provided 
by the forests included in the BC provincial parks system two data 
sources were used the consumer surpluses for forest recreational activ-
ities reported by Rosenberger et al. (2017), and the yearly visitation 
statistics by BC Parks. Rosenberger et al. (2017) reported the consumer 
surpluses that people enjoy from participating in forest recreational 
activities in North America, estimated by performing a meta-analysis of 
342 recreation economic studies. For the forest recreational activities 
included in this study, the following consumer surpluses (expressed in 
2022 C$) were used: hiking 96.3 C$, skiing 79.3 C$, camping 40.6 C$, 
wildlife viewing 68.5 C$, biking 98.9 C$. BC Parks estimated the number 
of daily visitors in all of BC Parks (from 2012 to 2018). These estimates 
are reported as the number of yearly visitors available in the end-of-the- 
year reports (https://bcparks.ca/research/). Cypress park, the most 
visited provincial park in BC, received more than 1.5 million visitors 
each year. 

The approach used for the monetary valuation was the crowdsourced 
benefit transfer. When applying the benefit transfer method, the con-
sumer surplus generated in a year by a recreational site is calculated 
using the following formula (Eq. (1)) 

CS =
∑n

i=0
(value act.i × ( avg. n◦ annual visits × ratio activityi )) (1)  

Where valueact.i is the CS associated with the recreational activity i; avg.
n◦annualvisitors is the average number of annual visits; ratioactivityi is the 
ratio between the number of people engaging in activity i and the total 
number of people visiting the site. 

In this study, this formula was applied in each cell of the same grid 
used for mapping the recreational potential of Cypress provincial park. 
The first step of the valuation process was to estimate the average 
number of visits in each cell, in every season. To do so, an assumption 

that there is a linear relationship between the number of visitors and the 
number of images acquired was made. Therefore, the number of visitors 
in each cell, for every season, was estimated using the following formula 
(Eq. (2)) 

avg.n
◦

annualvisits =
n◦ imgincellduringseason

totn◦ imginpark
× avg.n

◦

vistorsinpark (2) 

The ratios of the various recreational activities were estimated by 
grouping together the images acquired by the same user, during the 
same day, in activity user day (AUD). The activity assigned to each AUD 
(primary activity) was the most frequently depicted one among the 
images composing the same AUD. Then in each cell of the grid was 
estimated the ratio for each recreational activity, using the following 
formula: 

ratioactivityi =
n◦ AUDsactivityi

n◦ totalAUDs
(3) 

Lastly, Eq. (2) was applied in each cell of the grid, obtaining the 
annual consumer surplus generated. 

3. Results 

During the image gathering process, 1,398,737 images taken in BC 
between 2005/01/01 and 2020/12/31 were downloaded via Flickr API. 
Among these images, 91,819 (6.6%) were acquired within the bound-
aries of a provincial park and of these, only 64,670 (4.6%) were acquired 
in forested areas. The outputs of the image classification process are 
shown in Fig. 2. The relevance CNN classified as “not relevant” 3,070 
images (4.8%) that were excluded from further analyses. The CES CNN 
classified as “aesthetic ES” 39,660 (61.4%) images that were also 
excluded, while 21,863 (33.8%) were classified as “recreation ES” and 
fed into the level 2 CNN. The recreation CNN classified the remaining 
pictures as follows: 1,334 (2.1%) as “biking”, 2,359 (3.5%) as “camp-
ing”, 7,222 (11.2%) as “hiking”, 2,919 (4.5%) as “wildlife viewing”, 
3,791 (5.9%) as “skiing”. Pictures classifies as “climbing” and “water- 
related activities” were in total 4,238 (6.6%) and were excluded from 
the analysis. 

Fig. 2. Outcomes of the image classification process undertaken on Flickr im-
ages acquired in the BC parks system from 2005 to 2020. The inner layer 
represents Relevance CNN, the mid layer represents CES CNN, external layer 
represents recreation CNN. 
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The overall performances of the image classification process are re-
ported in Table 1. The overall accuracy of the CNN is 0.84, however, the 
performances vary for the different classes. In particular, the relevance 
CNN that identified and excluded from further analyses the non-relevant 
images had the poorest performances with a F1-score of 0.62. The CES 
CNN had the strongest performance, with a F1-score of 0.94. Lastly the 
recreation CNN performed well in the classification of images depicting 
hiking, wildlife and skiing, and biking with F1-scores higher than 0.7, 
while images depicting camping had F1-scores of 0.56. 

Combining the outcomes of the image classification process with the 
variables assigned to each image, it was possible to estimate the aver-
ages and standard deviations of the topographic variables, anthropic 
impacts, temporal variables, and biometrics variables within each rec-
reational activity. In Table 2 are shown the averages and standard de-
viations, while in Table 3 are shown the differences between the 
averages of the activity and their statistical significance assessed with 
the ANOVA test. 

“biking” and “skiing” are the activities characterized by the highest 
GHII, while “hiking”, “camping” and “wildlife viewing” had the lowest 
GHII. Furthermore, images depicting “hiking” and “skiing” were ac-
quired on average at the highest elevations and on the steepest slopes. 

Images depicting “skiing” and “wildlife viewing” were acquired in 
less dense forests (lower basal area, total biomass, and gross stem) while 
there are no statistically significant differences in the canopy height 
variable. 

The random forest classifier was trained on the 17,805 images clas-
sified as “hiking”, “skiing”, “camping”, “biking” or “wildlife viewing” by 
the level 2 CNN and had an accuracy of 74%. As shown in Fig. 3, the 
most important variable in improving the accuracy of the predictions is 
seasonality (i.e. the day of the year in which the picture was acquired) 
contributing to ~25% of the decrease in Gini impurity. Topographic 
variables are the second most important variables, contributing to a 
decrease of ~18% (elevation) and ~13% (slope). Anthropic impacts 
(estimated using GHII) contributed to ~12% of the decrease in Gini 
impurity, while all the forest biometrics variables had a less important 
contribution (<10%). 

Fig. 4 shows the partial dependency plots generated from the random 
forest classifier model, for the four most influential variables. Only the 
variables that contributed the most to the model performances were 
included (Gini impurity reduction >10 %). The graphs illustrate how the 
variables influence the likelihood of an image being classified as 
depicting one of the recreational activities. Specifically, these plots de-
pict the relationship between the input variables and the predictions, 
showing how the predictions partially depend on the values of the input 
variables of interest. The plots in Fig. 4 are 1-way plots since they 
showcase how the random forest model’s predictions depend on a single 
input. 

As shown in Fig. 4, the images acquired during the summer months 
(from 172 to 265) are more likely to depict “hiking” and “camping”, 
while the likelihood of an image to depict “wildlife viewing” activities 

increases during spring (80–171) and autumn (266–355). As expected, 
the likelihood of an image depicting “skiing” decreases rapidly during 
summer months and peaks during winter (355–365 and 1–79). 

Most of the forest recreational activities are more likely to occur in 
forests at low elevations, except for “skiing” whose likelihood peaks 
around 1,000 m. Furthermore, forests characterized by low slopes favor 
“camping” and “wildlife viewing”, intermediate slopes favor “biking”, 
and high slopes favor “hiking”. 

Lastly, anthropic impacts show a less clear trend, “biking” activity is 
more likely to occur where the anthropic impact on the forest is highest, 
while “camping” activities have the opposite behavior. 

In Fig. 5 are presented the recreational potential for hiking and skiing 
in Cypress provincial park across the seasons while Fig. 6 are shown the 
recreational activities with the highest potential to occur across the four 
seasons in Cypress provincial park. Hiking is by far the activity with the 
highest potential in spring, summer, and fall, while skiing has the 
highest potential during winter. In particular, skiing has the highest 
potential in the southeast portion of the park, especially during spring 
and fall, while during summer it is absent. Other recreational activities, 
such as wildlife viewing, camping, and biking have low potential in this 
provincial park. 

In the last step of the analysis (Fig. 7) an assessment of the monetary 
value of the recreational ecosystem service provided by Cypress park 
was undertaken. Using a crowdsourced benefit transfer approach, it was 
possible to estimate in every season, for each cell, the value of recreation 
expressed in C$/ha/day. As shown in Fig. 5, for Cypress park it is 
possible to identify two hotspots of recreational value, one in the 
southeast of the park and one in the central part of the park where most 
of the infrastructures (parking lots, hiking trails, Nordic ski, and sled-
ding areas, etc.). 

4. Discussions and conclusion 

Crowdsourced social media images are a valuable data source to 
explore CES provision and consumption, however, to date, many of the 
existing studies consider exclusively the image’s metadata, not taking 
full advantage of the possibilities that crowdsourced social media data 
offer. In this study, carried out in BC forests included in the provincial 
parks system, Flickr images were automatically classified with purposely 
developed CNNs and coupled with topographic, socioeconomic, and 
forest biometrics variables obtained via remote sensing technologies. 
This approach allowed us to examine if and how these variables influ-
ence the popularity of various forest recreational activities and map both 
the recreational potential and the value of the recreation CES. 

4.1. Outcomes and performances 

The performances of the CNNs adopted to automatically classify the 
images used in this study align with the ones obtained by the previous 
applications of transfer learning to the study of CES (Cardoso et al., 
2022; Gosal and Ziv, 2020). The performances however were not ho-
mogenous for all the classes. In particular, the classification process 
performed poorly when identifying not relevant images and images 
depicting people biking. Based on the automated image classification 
process, the most popular recreational activity in BC forests is hiking, 
followed (in descending order of popularity) by skiing, wildlife viewing, 
camping, and biking. These results compare well with those of a con-
ventional survey administrated to BC residents by Kux and Haider 
(2014) where BC residents were asked to indicate in which recreational 
activities they participated during 2012 and found that the most popular 
recreational activity among BC residents is hiking, followed by skiing, 
fishing, and biking. Although the options given to the respondents of the 
survey differ from the activities considered in this analysis the two most 
popular activities (hiking and skiing) match. 

Previous studies suggested that the recreational attractiveness of 
forested areas is influenced by: (i) topographic variables such as slope 

Table 1 
Overall performances of the image classification process.  

Class Precision Recall F1-score N◦ images 

Not relevant 0.71  0.52  0.62 23 
Aesthetic 0.93  0.95  0.94 536 
Biking 1  0.49  0.74 17 
Camping 0.58  0.54  0.56 41 
Hiking 0.66  0.76  0.71 125 
Wildlife 0.76  0.96  0.85 49 
Skiing 0.82  0.77  0.8 48 
Others 0.65  0.54  0.59 61  

accuracy    0.85 900 
macro avg 0.76  0.69  0.73 900 
weighted avg 0.84  0.84  0.83 900  
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and elevation (Abildtrup et al., 2013), (ii) tree stand characteristics such 
as tree stock and crown closure (e.g. (Weller and Elsasser, 2018) 
(Filyushkina et al., 2017), and anthropic impacts in the area (Roovers 
et al., 2002). While these variables seem to affect the number of visitors 
in forests, not all of them had a significant effect on the type of recrea-
tional activities that people engage in. Specifically, it appears that the 
variables that have the most influence in determining the type of forest 
recreation are temporal and topographic, while forest biometrics 

variables play a less important role. 
The recreational values maps show how most of the consumer sur-

plus provided by the park’s forests is concentrated in two hotspots (one 
in the southeast zone and one in the central zone), while in most of the 
cells created it was not possible to estimate a value since no images were 
acquired. This could suggest that even in forests that are managed for 
promoting recreational activities, visitors tend to coagulate in specific 
areas. 

Table 2 
Values of topographic, anthropic impacts, seasonal, and forest biometrics data between the various forest recreational activities. Standard deviations are reported in 
brackets.  

Activity GHII Slope 
(◦) 

Elevation 
(m) 

Canopy height 
(m) 

Basal Area 
(m2/ha) 

Gross Stem 
(m3/ha) 

Total Biomass 
(tonnes/ha) 

Hiking 19.4 (16.0) 16.3 (13.8) 1034.1 (809.2) 25.5 
(8.1) 

45.0 
(22.7) 

621.8 (454.1) 241.0 
(153.4) 

Biking 23.6 (14.1) 9.1 (9.7) 731.2 (605.2) 24.9 
(7.7) 

43.4 
(22.3) 

588.4 (429.7) 240.0 
(154.3) 

Skiing 24.8 (13.7) 13.3 (12.7) 1325.7 (523.1) 23.6 
(7.4) 

36.7 
(21.0) 

468.0 (378.1) 194.0 
(132.8) 

Camping 20.0 (13.8) 9.1 (11.1) 611.4 (614.1) 23.7 
(8.1) 

40.8 
(22.0) 

535.5 (416.9) 221.2 
(150.5) 

Wildlife 19.7 (12.3) 12.9 (10.0) 633.6 (617.6) 22.4 
(8.0) 

37.3 
(22.3) 

471.4 (408.0) 199.3 
(150.3)  

Table 3 
Differences in absolute value between the averages and statistical significance according to ANOVA test. Values in bold are statistically significant.  

Activity 1 Activity 2 GHII Slope 
(◦) 

Elevation 
(m) 

Canopy height 
(m) 

Basal Area 
(m2/ha) 

Gross Stem 
(m3/ha) 

Total Biomass 
(tonnes/ha) 

Skiing Wildlife  5.0  3.8  692.1  1.8  4.2  86.3  1.0 
Skiing Camping  4.7  3.8  714.3  3.0  7.7  153.8  18.8 
Skiing Hiking  5.4  3.4  291.6  1.9  1.6  150.3  40.7 
Skiing Biking  1.2  0.5  594.4  0.5  8.3  33.4  46.0 
Wildlife Camping  0.3  0.0  22.2  1.2  3.5  67.5  19.8 
Wildlife Hiking  0.3  7.2  400.5  0.1  2.6  64.0  41.8 
Wildlife Biking  3.8  4.3  97.7  1.3  4.1  52.9  47.0 
Camping Hiking  0.6  7.2  422.7  1.1  6.1  3.5  21.9 
Camping Biking  3.5  4.3  119.9  2.5  0.6  120.4  27.2 
Hiking Biking  4.2  2.9  302.8  1.4  6.7  116.9  5.3  

Fig. 3. Variables importance, on the x-axis is represented the percentual decrease in node impurity.  
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4.2. Innovativeness, Limitations, and future perspectives 

The literature around the use of social media data for CES explora-
tion has been focusing on their use to describe their demand and pro-
vision. Less attention has been given to how these data could be used at 
an operational level in the management of the environment. In this 
study, combining social media data with remote sensing data, and 

applying machine learning techniques, it was possible to obtain fine- 
grained information on how forest and landscape variables influence 
the type of recreation in which forest visitors engage. Previously, to 
obtain such data the most common approach was to resort to in-situ 
surveys which are costly and time-consuming (Richards and Tunçer, 
2018). Instead, the methodology used in this study has shown the po-
tential to be a viable alternative to such surveys. Furthermore, the 

Fig. 4. Partial dependency plots showcase how the probability predictions of the model partially depend on the values of the input variables of interest. On the x-axes 
are the different variables (Julian day of the year for seasonality, m above sea level for elevation, degrees for slope, and GHII for anthropic impacts) on the y-axes is 
instead the predicted probability of the image to be classified as belonging to the class. 

Fig. 5. Recreational potential estimated for hiking and skiing in Cypress park across the seasons. The values reported should be interpreted as a 0–1 suitability score.  
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produced maps provide useful insights to forest managers through the 
recreational potential map and a recreational values map. Recreational 
potential maps could be used to plan and locate the implementation of 
forest recreational infrastructures such as hiking or biking trails, 
ensuring that the chosen forested area is suitable for that activity. Rec-
reational values maps could be useful in providing detailed insights into 
the potential costs of partial park closure or the impacts of forest 
disturbances. 

Despite the promise of the approach adopted in this study, future in- 
field applications of it have some limitations. Ciesielski and Stereńczak 
(2021) have argued that social media users’ demographic characteristics 
could substantially differ from the ones of forest recreationists, causing 
the selection of a nonrepresentative sample. However, Flickr data 
appear to be less prone to this bias compared to other social media data 
(Hausmann et al., 2018). Furthermore, the various forest recreational 
activities could be characterized by the different frequencies of image 
acquisition, for example, hikers could be more inclined to take pictures 
than bikers. This could limit the availability of images portraying certain 
forest recreational activities, and affect the ratio of activities used in the 
assessment of recreational values. Also, the crowdsourced benefit 
transfer approach that was used in this study does not allow the 
assessment of the value of recreation in areas in which no images were 
acquired. Therefore, this method will rarely be applicable in difficult-to- 
access forested areas, as highlighted by the fact that most of the cells in 
Cypress park had no images. In addition, the possibility of freely 
accessing social media data is not granted, since changes in social media 
platform policies can happen abruptly. Lastly, even though crowd-
sourced social media data are often referred to as “big data”, the share of 
relevant images among the ones gathered is only 4.6%. This indicates 
that social media data should not be seen as a panacea for the study of 
forests CES, but rather as a useful source of insights on CES provision and 
demand, especially in forests with high recreational value and peri- 
urban forests. 

So far, the research around the use of social media data in the study 

of forest CES, has been mostly focused on the development of method-
ologies and approaches to extracting spatial and quantitative informa-
tion on recreational fluxes. This study suggests that social media data 
and in particular images represent often overlooked opportunities for 
exploring the demand for forest CES from a qualitative point of view. 
However, to unlock the full potential of social media data for forest 
management, additional studies are needed. In particular, we believe 
that future research should focus on two objectives. The first objective is 
to obtain a better understanding of the relationship between in-situ and 
crowdsourced social media data. Is the ratio of activities estimated via 
social media data coherent with the one obtained via in-situ surveys? If 
biases are introduced by analyzing social media images, are they 
consistent in different study areas? Answering these questions would 
allow forest managers to confidently use the automated analyses of so-
cial media images to gather detailed, and almost real-time information 
on the value of the recreational ecosystem service that the forests pro-
vide by applying the crowdsourced benefit transfer approach adopted in 
this study. The second objective is the creation and sharing among re-
searchers of databases of images depicting forest recreational activities. 
These databases would allow research groups worldwide to train new 
and more accurate CNN for the classification of images based on the 
depicted recreational activities. Ultimately, this would allow for the 
application of the methodology applied in this study in new contexts in 
which alternative approaches are difficult to apply, such as developing 
countries and remote areas. 
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