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Abstract

We introduce and validate the use of commercially available human mobility datasets based

on cell phone locations to estimate visitation to natural areas. By combining this data with

on-the-ground observations of visitation to water recreation areas in New England, we fit a

model to estimate daily visitation for four months to more than 500 sites. The results show

the potential for this new big data source of human mobility to overcome limitations in tradi-

tional methods of estimating visitation and to provide consistent information at policy-rele-

vant scales. However, the data providers’ opaque and rapidly developing methods for

processing locational information required a calibration and validation against data collected

by traditional means to confidently reproduce the desired estimates of visitation. We found

that with this calibration, the high-resolution information in both space and time provided by

cell phone location-derived data creates opportunities for developing next-generation mod-

els of human interactions with the natural environment.

Introduction

People visit natural areas to view the scenery and wildlife or to engage in any number of recre-

ational activities they enjoy. These areas are important to society, as shown through the sheer

number of people who visit parks, beaches, walking trails, and other natural spaces and their

significant contribution to the economy [1]. However, it is difficult to quantify the use of natu-

ral areas across the many, diverse locations and the timing of those visits. Observational counts

are time consuming and expensive to conduct and traditional survey approaches have their

own sampling complications for estimating visitation. Therefore, it is often unknown how
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many and what types of people visit natural areas—critical information for managers or

researchers to apply in natural resource damage assessments, park and urban planning, eco-

nomic valuation studies, tourism studies, as well as to inform many other management deci-

sions [2–3].

This paper demonstrates the use of commercially available anonymized and aggregated

data on cellular device locations to estimate visitation to natural areas. For brevity, we refer to

these cellular device location-based datasets generally as “cell data” in this paper. We investi-

gated how cell data performs in providing the types of visitation information needed in policy

applications, information on the temporal and spatial distribution of visits to natural areas.

Specifically, we compared the cell data with on-the-ground daily visitation counts that we col-

lected, along with other federal, state and town records for water recreation areas. We found

that the cell data contained useful information for estimating visitor use, but it required a cor-

rection (calibration) to match the scale of the observations and to be confident with its wider

application. We then built and applied a statistical model to estimate daily visitation with cell

data to more than 500 water recreation areas in the northeastern United States for the primary

four months of recreational use (June-September) of 2017.

Our application demonstrates the potential for this emerging source of big data to provide

comprehensive visitation information across many places and time windows, a feat that would

be impractical with traditional methods. The high-resolution information in space and time

provided by cell data expands opportunities for developing next-generation models of human

interactions with the natural environment. In addition, cell data provides the ability to know

not just how many people are visiting specific locations, but also where visitors are coming

from within aggregated geographies. This information allows for basic calculations of distance

traveled to a location and a deeper understanding of the community composition of visitors.

While these new data sources may help overcome many logistical barriers to obtaining behav-

ioral information at scale, our work highlights the ongoing need for traditional methods of col-

lection for calibration and validation for these new data sources to be useful in common

applications.

Background

Existing visitation information for natural areas is limited and currently comes from many dif-

ferent, often inconsistent, sources. There are visitation estimates derived from entrance fees,

parking fees, lifeguard counts, car or people electronic counters, aerial surveys, remote sensing,

or tailored observational sampling plans [4–14]. Each data source comes with its own nuances

in terms of sampling issues and geographical and temporal coverage. Most ongoing visitation

collection efforts only capture paying customers during the hours of fee collections, thereby

providing only a subset of daily use. There are also detailed collections that coincide with a spe-

cific project or event, such as an oil spill, but the knowledge is often not generalizable past a

particular region or time-period. Often, the need to obtain visitation information arises after

an event has occurred, making the before and after comparison difficult [3]. These event-

based data collections are also resource intensive [2].

Efforts to overcome these barriers using other types of digital records include estimates

derived from photo-sharing or other types of social media posts [15–21]. These techniques

have been useful in estimating visitation to large parks, attractions, and natural areas around

the world over long periods of time by providing monthly, seasonal, or yearly visitation esti-

mates. However, these data sources represent only the small fraction of the public that opt to

use those specific social media outlets, and they lack adequate temporal and spatial resolution.

These factors limit the ability of social-media based methods to inform broader policies or
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localized environmental management. Use of cellular devices is much more common and the

resolution of the information provided is much finer in both time and space.

Cell data come from the digital traces of people’s cell phone use and location. In the past,

this was based on the location of the tower a device was communicating with or a triangulation

from the device to various cellphone towers. This data provided information based on many

people, but with locational and temporal accuracy issues related to connectivity to the cell-

phone tower network and peoples’ active use of the phone [22]. With the addition of GPS

instrumentation and the growing ubiquity of smartphone-style cellular telephones, these digi-

tal traces have become more accurate, more frequent and represent an increasing proportion

of the population [23–28]. The device-level, raw data are collected by cellular telephone pro-

viders, GPS enabled devices and increasingly by smartphone applications. Several third-party

providers on the commercial market combine this information and sell processed data in a

variety of formats [28].

Cell data in various forms have been used most widely in the transportation and urban

planning fields to understand use of public infrastructure and commuting [23–26] and to assist

in land use classifications [27]. This data has also been used to understand economic trends

[29], restaurant choice [30] and in epidemiology and population research in developing coun-

tries [31–34]. Despite its promise, there are limited environmental applications of the data to

date, with notable applications concerning natural disasters [32] and air quality [35–36].

There are a few recent applications of cell data to understand behavior in and around natu-

ral areas [37–39]. Kubo et al. [37] used cell data to calculate the economic value of coastal tour-

ism across Japan, but provided no ground truth to the visitation information. For an island

park in Korea [38], Kim et al. applied cell data to analyze tradeoffs between visitation and bio-

diversity and showed decent correlations between the cell data and monthly estimates of visita-

tion to several specific locations on the island. A study of parks in California, USA, is the

closest to the work presented in this paper [39]. The study used a similarly processed cell data

product from a third-party vendor to estimate daily park visitation. They calibrated the cell

data with just one set of data, vehicle counts on a major nearby road, finding a unit-value cor-

rection factor. They then validated their estimates against a single park’s gate traffic and park-

ing information. They found good agreement with their corrected cell data model and daily

vehicle counts. From there, they used park-specific vehicle-to-people ratios to extrapolate to

the number of visitors to the other twenty-one parks of interest. Our study differs by incorpo-

rating multiple visitation records representing counts of people to a wider set of locations:

eighteen different water recreation areas. We find similar potential for this data source to pro-

vide useful, policy-relevant visitor use information at daily and site-level scales for water recre-

ation areas.

Data description

We identified and purchased a dataset of visitation derived from cell phone locations for a set

of geographies and time to understand the extent, temporal distribution, and value of water

recreation for Cape Cod, Barnstable County, Massachusetts and New England, USA in gen-

eral. The set of water recreation areas comprises a comprehensive list of all the public beaches

and public access points to water (fresh and saltwater beaches, public access points, parks,

ways to water, and boat ramps) for Barnstable County, Massachusetts, compiled from federal,

state, county, and town GIS information (n = 464), and an additional set of beaches across

greater New England (n = 113). The data we used consists of estimates of visitation to these

water recreation areas over the summer months of 2017 (June through September).
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We purchased data products processed by a third-party provider, Airsage, Inc. This pro-

vider creates population-level estimates of human mobility derived from a panel of over 120

million devices using location information from smartphone applications (see S1 File). The

data provider processes this device-specific locational information. Before we receive it, the

data is anonymized and aggregated to contain no personally identifiable information. We do

not obtain any device-level information, nor raw device GPS locations, but instead, we obtain

aggregated summaries of visitation by recreation site and estimates of the visitors’ origin cen-

sus block-group geographies. The data provider translates their sample to population-level

estimates using weights based on the share of the population their sample represents by cen-

sus-tract geographies. The cellular device sample we purchased data from includes about 30%

of the U.S. population but varies by tract and month.

To obtain the cell data for the sample geographies of interest, we spatially buffered (added

area) around the water-access sites which were designated as line or point features in the origi-

nal spatial databases. In consultation with the data provider and after attempting a range of

spatial buffers, a 100-meter buffer was chosen to balance specificity in capturing water recrea-

tion visits (i.e., not capturing ancillary points of interest in geographies, like restaurants or

stores, for example) with the accuracy of the locational information. We sent the defined water

recreation areas to the data provider as a set of geographic extents, or polygons (see Fig 1 for

examples of area definitions), and they returned the aggregated and anonymized processed

data in tabular form. We include a sample of the dataset below (Table 1) and include the

entirety of this dataset available with the code package associated with this work at https://

github.com/USEPA/Recreation_Benefits.git.

The locational accuracy of the device locations underpinning the data range depending on

the source device and the smartphone application. The accuracy of reported locations from

applications varies with ranges of 1–10 meters (GPS), 20–200 meters (Wi-Fi), and 100–2000

meters (cell tower-based) based on the method(s) each application uses to locate each device.

We were not able to obtain an average locational accuracy for devices seen in our geographies

in our specific dataset since the smartphone applications do not report the exact location

methods to the data provider and we do not receive device-specific locational information.

Given the potential range in location accuracy, visits attributed to a water recreation area

could have actually been to a nearby attraction, or vice-versa. We chose a relatively small buffer

around the recreation areas to be conservative in defining the area attributed to use of the site

and to minimize any mis-located visits. Given this and other limitations, we relied on the cali-

bration and validation to on-the-ground visitation counts to assess the usefulness and accuracy

of the cell data for our application and the choice of spatial definitions and buffers around

sites.

In total, the cell dataset includes visitation estimates for 51,511 days across 577 sites. A com-

plete set would be 70,394 days (577 sites x 122 days), but some of the days for some sites are

missing due to low visitation and detection limits. A visit was defined as a device location his-

tory implying a stay estimated to be longer than five minutes at a geography that was not the

home or work location of the device based on the behavior of that device over the month.

Home was defined as the census block group where the device is most often seen over the

month between 9PM-6AM (see S1 File).

In addition to estimates of visits, the cell data for each area also includes the home location

of those visitors, either at the census block-group level or categorized as international if the ori-

gin was outside of the United States. For example, the data may show 100 people visited beach

x during a time period, with 30 of those people come from census block y, 20 from census

block z, and so on. The monthly visitor origin-destination data contains 642,915 data points

representing monthly trip totals (577 sites x origin census block groups, which vary by site and
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month). This total is not inclusive of the data representing zero trips to destinations originat-

ing from block groups implied by the full origin-destination matrix. Because of the geographic

and temporal scope, collecting this same information with traditional methods would be pro-

hibitively expensive, time consuming, and inconsistent.

Methods

To investigate the cell data’s ability to reproduce daily visitation counts, we compared the cell

data to a series of observational counts collected from three different, commonly recorded

sources for beach and park visitations. We then calibrated a model to translate the cell data

into consistent estimates of visitation across many sites in the region of interest and across

many days. We purposely designed the calibration to cover a wide range of access location

sizes and visitation totals to test the transferability of the cell data and models built from it. No

Fig 1. Example definition of water recreation areas. Dowses Beach, Barnstable, Massachusetts, USA and nearby water access areas. Point and line features

representing water recreation access were buffered by 100 meters to capture use at the sites. These geographic areas correspond to the sample of visitation estimates

from the cell data.

https://doi.org/10.1371/journal.pone.0231863.g001
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visitation dataset alone was perfect for use in calibration across a wide range of locations due

to differences in counting methods, which is a common limitation to visitation records to nat-

ural spaces, generally. Capturing visitation to natural areas is very challenging, and existing

approaches all have their own limitations for capturing daily visitation [40]. The observational

data that overlaps with the cell data consists of: 1) onsite counts of small access points to an

estuary, 2) a town’s visitation estimates for their managed beaches, and 3) entrance fees col-

lected by a town to a major beach.

Visitation observation methods also vary because the context for taking them differ.

Although the objective may be the same, observing visitation at a major beach requires differ-

ent methods than those used for a set of small access points around an estuary [41]. By com-

paring and calibrating our data to a combined set representing the variety of recreational

visitation count methods that exist in the real world, we show the ability of cell data to both

replicate the types of data that are traditionally used and to bridge the various observational

visitation records common around natural resources. Each source of observational data is

briefly described below.

• Small: We quantified use of the Three Bays estuary system on Cape Cod, Massachusetts

through observational sampling for eleven public access points within the estuary. The

counts were taken as a combination of periodic people and car counts and sunrise-to-sunset

counts of visitors and cars. The public access points include beaches, docks, boat ramps, and

landings. Observational data from this study include visitation estimates for 11 public access

points for seven days from June to August, 2017 [41]. (N = 72)

• Medium: The diverse set of beaches for Barnstable, Massachusetts, on Cape Cod includes

saltwater and freshwater beaches accessible to either the public or to town residents only.

The dataset provided by the Town of Barnstable’s Recreation Division includes daily visita-

tion estimates from lifeguard counts for seven of their beaches from Memorial Day (May 29)

to Labor Day (September 4), 2017. (N = 234)

• Large: Narragansett Town Beach in Rhode Island is a popular destination for tourists and

residents. Access to this beach is divided into resident only and public entrances. The public

entrance requires an entrance fee for each person providing an accurate dataset of daily visi-

tation to the beach. However, these entrance fees are only collected for the public part of the

beach. By missing those visitors with resident permits, the data provided by the town of Nar-

ragansett underestimates visitation to the whole beach. Therefore, based on a .85/1 ratio

between public and resident use obtained through parking lot counts conducted in the

Table 1. Sample of dataset derived from cell phone locations.

POI DATE HH00 HH01 HH02 HH03 HH04 HH05 . . . HH20 HH21 HH22 HH23 DEVICE_TOTAL

1 20170601 251 96 47 0 171 488 . . . 668 848 812 222 21895

1 20170602 245 202 133 148 112 646 . . . 594 604 1157 468 21526

1 20170603 299 148 196 243 340 135 . . . 922 1283 1100 759 19449

1 20170604 658 332 117 372 414 395 . . . 1071 186 404 286 19415

2 20170601 0 0 0 0 0 0 . . . 86 0 0 0 1103

2 20170602 114 0 0 0 0 50 . . . 138 312 0 48 2746

2 20170603 0 0 0 0 0 0 . . . 238 226 122 66 2247

2 20170604 66 66 66 66 0 0 . . . 156 33 0 54 2046

POI indexes the water access locations and each column represents estimated visitation in hourly windows, with HH00 being 12AM-1AM. DEVICE_TOTAL refers to

the estimate of unique devices seen in any of the 24 hours at that water access location.

https://doi.org/10.1371/journal.pone.0231863.t001
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public and resident parking lots, the data were adjusted to represent daily use for the whole

beach (see S1 File for details). Daily visitation numbers are provided from Memorial Day to

Labor Day, 2017. (N = 86)

Fig 2 shows how the cell data-derived counts and observational counts compare. The cell

data-derived estimates correspond well, but overestimate the observed visitor counts by about

four times. This overestimation is likely due to several confounding assumptions. These

assumptions start with choices in how the data provider processes the raw cellular device level

information to associate records with geographies in certain time windows and to extrapolate

the sample of cellular devices to population level estimates through their estimates of market

penetration (see S1 File).

The cell data product did not provide counts for the block of time that corresponded to our

visitation counts (9AM-4PM), but rather by individual hours. Therefore, we had to translate

these hourly counts to our time window by making assumptions on the length of stay of visi-

tors, since the same device would be counted multiple times if it were to stay at the site for mul-

tiple hours. Following the data provider’s advice to match the cell data-derived information to

visitation observations, we used an assumption of a three-hour average stay to match the time-

Fig 2. Observational counts compared against cell data. Observations of visitation (9AM-4PM) plotted against uncalibrated visitation estimated from the cell data for

the same hours.

https://doi.org/10.1371/journal.pone.0231863.g002

PLOS ONE Using Cellular Phone Location Data to Estimate Visitation to Natural Areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0231863 April 30, 2020 7 / 19

https://doi.org/10.1371/journal.pone.0231863.g002
https://doi.org/10.1371/journal.pone.0231863


window of our observations. We could have picked data on one hour in the window to be rep-

resentative of the whole three hours, the end hour for instance, but this would discard infor-

mation in the other hours. Instead, we calculated a moving average (three-hour window) of

visitation for each hourly visitation estimate from the cell data for each site. We then summed

the moving average of only the central hour of three-hour blocks from 8AM-4PM (9AM,

12PM, 3PM) (see S1 File for more details). This reduces the cell data counts due to multiple

sightings, since we summed only one of the three hours in each window, but maintains the

information in the hourly distribution of use through the day.

An assumption of a shorter length of stay would have increased the cell data counts and

vice-versa. For example, if we assumed a two-hour average length of stay, we would have used

two-hour instead of three-hour windows in the daily sums, increasing the daily total. While

three hours may be a long average length of stay for recreational visits to all the water access

sites, the data reflecting this assumption were inputs to the calibration models. We sought to

correct any bias and inaccuracies introduced by this assumption by using the calibration mod-

els fit to on-the-ground counts below. Similarly, there is a difference in the relationship across

the three sizes of access points that can also be seen in Fig 2. The differences by group are likely

due to differences in the observational counting methods and possibly how well cell data per-

forms based on the size of the area. We control for both possible effects in the statistical models

used to calibrate the data.

Models and prediction

Our objective was to develop a model that predicts visitation to a range of water recreation

areas using the cell data and other explanatory variables that are easily compiled across many

places. These covariates include weather (temperature and precipitation), the month, day of

the week, and size of the water access. The model controls for the different counting methods

in the observational data. We estimated a varied set of candidate regression models including

several functional forms where we defined linear and log-linear relationships between the visi-

tor counts and the cell data and other regressors in R [42]. Since we did not have any precon-

ceived notion of the functional forms of the relationships between the covariates and the

dependent variable, we also estimated a more general random forest model. A random forest

model is a type of non-parametric model commonly used in the data science and machine

learning fields. They have been shown to reproduce many functional forms and have superior

predictive performance over standard multivariate regression models for many applications

[43–44].

The candidate model specifications were as follows:

• Linear

Yit ¼/ þb1Cit þ β2Dt þ β3Wt þ β4Si þ b5Ai þ eit ð1Þ

• Log-Linear

logðYitÞ ¼/ þb1Cit þ β2Dt þ β3Wt þ β4Si þ b5Ai þ eit ð2Þ

• Random Forest

Yit ¼ f ðCit;Dt;Wt; Si;AiÞ ð3Þ
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Where,

Yit - Observed visits to site, i, on day,t.
Cit - cell data-derived estimate of visitation to site i on day t.
Dt - Matrix of dummy variables for the month, day of the week, weekend, holiday.

Wt - Matrix of weather variables (precipitation, temperature, windspeed) for day t from

Barnstable Municipal Airport weather station.

Si - Dummy variables for the source of observed visitation data (Narragansett Beach, Barn-

stable Town, Three Bays).

Ai - Area of site i.
/ - intercept.

eit - error term.

We compared the candidate models based on their predictive performance. To avoid select-

ing an overfit model and therefore being overconfident in its out-of-sample model perfor-

mance, we conducted a cross validation by splitting the data into training (in-sample) and test

(out-of-sample) sets. We fit the candidate models to the training sets of data, predicted the test

sets, and calculated fit statistics on the out-of-sample observations. We did this for 10 random

splits of the data using a k-fold cross validation and present the average model performances

across the 10 test sets in Table 1 [45–46]. Using this cross-validation technique is a statistical

check and a data science best practice. Given the predictive purposes of these classes of models,

we suggest that, in the future, a similar cross-validation process should be performed when

using proxy-types of data for predicting visitation. Additional regression and random forest

outputs, goodness-of-fit metrics, and details can be found in the S1 File as well as in the code

package (https://github.com/USEPA/Recreation_Benefits.git).

Ethics statement

This work was reviewed and deemed exempt by the Institutional Review Board (Study #17–

3334) from the University of North Carolina at Chapel Hill.

Results

Using the cell data product from the data provider resulted in about a four-times overestima-

tion of the type of recreational visitation we were looking to estimate when compared against

observations. Despite the scale difference, we found the information contained in the cell data

to be valuable to predict visitation across a diverse set of sites after calibration. From our mod-

els, there are a few ways to show that it is the information in the cell data that is providing

most of the explanatory power as compared to the covariates (weather, area, source of the

observational counts). Table 2 shows the regression results using just cell data (columns 1–2),

then with additional covariates (columns 3–4). Just using cell data produces a decent model in

linear form. The additional value of the covariates can be seen in the improved stats between

column 1 and 3 and 2 and 4. In the random forest model, the cell data was by far the most use-

ful in modeling visitation as seen by metrics of variable importance (see S1 File)

Of the candidate models, we chose the random forest as the preferred model, given its pre-

dictive performance indicated by the lowest RMSE, MAE, and low bias (ME) during cross vali-

dation (see Table 3). To create the final comprehensive visitation dataset, we used the

preferred random forest model to predict daily visitation to all 577 water-access areas in our

sample for the four summer months (June-September) of 2017. Fig 3 plots predicted visitation

using the random forest model against observational counts, showing a tight overall in-sample

fit. Our calibrated model produced daily visitation estimates with an out-of-sample mean

absolute error of 155 people (Table 3) based on the cross-validation.
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This model produced comprehensive visitation estimates across the region, but also at each

individual site across days. The result of this work, a calibrated dataset of visitation including

the code and data for producing the results in this paper can be found at https://github.com/

USEPA/Recreation_Benefits.git. As examples of the usefulness of the broad geographical scope

of the model and resulting database, Fig 4 shows daily visitation estimates to all public water-

access points on Cape Cod for the summer months of 2017. Along with these types of land-

scape-scale results, the data and model provide focused site-specific information. Fig 5 shows

daily visitation to a single beach across the season, information available for all sites and days

across the four summer months.

Table 2. Regression results.

Visits Log(Visits) Visits Log(Visits)

(1) (2) (3) (4)

Cell data 0.245��� 0.0003��� 0.296��� 0.0002���

(0.005) (0.0000) (0.007) (0.0000)

Area (m2) 0.00003 0.000006���

(0.0002) (0.0000006)

Narragansett -646.796��� 0.182

(72.136) (0.225)

Town of Barnstable -60.612 -0.409���

(42.119) (0.131)

Temperature (˚F) 10.398��� 0.066���

(2.567) (0.008)

Precipitation (inches) -26.180 -0.447���

(47.250) (0.147)

Constant 33.128� 4.320��� -334.114 0.539

(19.496) (0.064) (206.779) (0.644)

Observations 392 392 392 392

R2 0.86 NA .89 NA

ME .27 -430.96 .43 -74.35

RMSE 318.08 3161.23 272.47 1030.21

MAE 186.69 791.33 174.68 345.93

Dummy variables are included for month and day of the week in columns 3 and 4. Columns 2 and 4 are in log-linear form. See code and S1 File for additional details

and candidate models. Goodness of fit statistics are from out-of-sample sets from a 10-fold cross validation. Log-linear model predictions were converted to people

terms for goodness of fit statistics. ME = mean error, RMSE = root mean squared error, MAE = mean absolute error.

� p<0.10.

�� p<0.05p.

���p<0.01.

https://doi.org/10.1371/journal.pone.0231863.t002

Table 3. Performance statistics for candidate models.

ME RMSE MAE R-Squared

Linear model 0.43 272.47 174.68 .89

Log-linear model -74.35 1030.21 345.93 NA

Random forest -3.78 262.48 154.84 .91

ME = mean error, RMSE = root mean squared error, MAE = mean absolute error. See S1 File for complete set of model output and performance statistics.

https://doi.org/10.1371/journal.pone.0231863.t003
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Since we combined three different sources of visitation data to fit the model, we also ran

candidate models on each visitation observation data source separately and the relationships

between the cell data and each visitation dataset remained similar (see S1 File). The in-sample

fit of those models varied, with the smaller access point dataset, Three Bays, the least well fit

(R2 = .36), to better fits with the larger access point of Narragansett Beach (R2 = .96). The num-

ber of observations vary with the sources, as do specifics of how those observations were col-

lected, but we suspect the cell data may be better at predicting visitation to larger areas, with

more daily visitation. There are more cellular devices in a sample of a day at the more popular

places to estimate visitation from, likely reducing noise in the estimate.

We used the most accurate and unbiased of the candidate statistical models for prediction.

However, there are several sources of potential inaccuracies and biases in estimating visitation

in this way that are not incorporated in the metrics of model goodness-of-fit. The observa-

tional visitation counts contain their own uncertainties and potential biases based on their

sampling design and counting methods. By calibrating and validating to those counts, we may

be carrying over those issues to our estimates of visitation. In addition, the cellular data con-

tains uncertainties resulting from the geospatial accuracy of the device locations, our geo-

graphic definition of the sites, and the methods of expansion from the device sample to

population-level estimates. More applications using cell datasets are needed to understand

Fig 3. Cell data modeled visitation compared against observations. Predicted daily (9AM-4PM) visits from the cell data model compared to observed

visitation at three sizes of water recreation areas in New England, USA.

https://doi.org/10.1371/journal.pone.0231863.g003
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these limitations combined with additional and more consistent collections of visitation obser-

vations for calibration.

The models we fit may also be susceptible to spatial autocorrelation issues resulting from

the cell dataset if there are variations in how the data represents visitation geographically. Spa-

tial autocorrelation in models potentially inflates goodness-of-fit estimates, can bias parame-

ters, and reduces predictive performance. We have controls in the models for each group of

sites, which are geographically clustered to alleviate some of the potential issue. Similarly, col-

linearity in the covariates could potentially cause poor predictions, attributing predictive infor-

mation to the wrong covariate, for example. We checked for this issue in a few ways by

building up the model covariates sequentially starting with cell data alone and adding covari-

ates. This led to little change in the relationships between observations and cell data counts

(see S1 File for more model details and variations). We also consistently found good out-of-

sample goodness-of-fit metrics in a cross validation, giving us more confidence that spatial

Fig 4. Visitation for Cape Cod, MA, USA for the summer of 2017. Total predicted visits (9AM-4PM) to water recreation areas for the summer of 2017 (June, July,

August, September) for Cape Cod (Barnstable County, MA, USA), using the cell data model.

https://doi.org/10.1371/journal.pone.0231863.g004
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autocorrelation and collinearity were likely not an issue in the models’ predictive

performance.

Discussion

We contend that the use of cell data provides a valuable method to quantify visitation across

large numbers of areas and over time. When calibrated, the cell data provided an accurate and

consistent way to estimate visitation to natural areas. It allowed us to produce a previously

unavailable dataset of water visitation at a policy-relevant resolution, spatial extent, and consis-

tency. The information provides visitation details for specific locations at a regional or sub-

regional scale, the scale at which most decisions and policies regarding public natural areas are

made. Understanding the scale and timing of visitor use of an area allows managers to

Fig 5. Narragansett Beach, RI, USA, daily visitation. Predicted daily (9AM-4PM) visits to Narragansett Town Beach (Narragansett, RI, USA) for the summer

of 2017 using the cell data model. These daily predictions are compared to observed visits based on on-the-ground counts.

https://doi.org/10.1371/journal.pone.0231863.g005
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determine and provide appropriate facilities and safety precautions and researchers to predict

impacts of environmental change, measure effects of natural disasters, and conduct research

on social and economic value of public access to natural areas. To date, no other methods for

quantifying use have the same capacity for providing location-specific data across broad geo-

graphic areas at such a high temporal resolution.

The data can inform landscape-level analyses of behavior to understand, at a broader scale,

the impacts of changes in environmental quality across time as well as across access geography.

The origin data can be used to better understand who visits an access point based on where

they come from. This provides informative profiles regarding the characteristics of people and

communities that are, or could be, affected by environmental degradation or improvements or

other policy and management decisions. Taking advantage of variations in behavior and envi-

ronmental quality across time, cell data’s fine temporal resolution opens avenues for longitudi-

nal studies. For instance, it provides the ability to quantify the number of visitors affected and

economic impacts incurred from beach closures, algal blooms, oil spills, or other events that

typically are not captured consistently with current methods or lack baseline data for measur-

ing impacts.

Given our results, we suggest caution in using visitation estimates out-of-the-box from data

providers without calibration. There is useful information in the datasets, but we found that

calibration was necessary to confidently use the data for our purposes. In its delivered form,

the data overestimated use of the type we were interested in quantifying, recreational visits to

water-access areas. We hypothesized the need for this correction based on a few practical fac-

tors discussed below.

We were only able to define recreation visitation by limiting the area of the requested geog-

raphies (the GIS information for the sites we requested from the data providers) where recrea-

tion would likely be the primary purpose for visiting the area and during time-windows of

interest. Inherently, the on-the-ground visitation observations were more restrictive in captur-

ing visits for recreation and not capturing ancillary or non-recreational visits to the geogra-

phies, like walking by the site on a nearby road. It is also reasonable to assume some

observational counts may be conservative and under-report recreation visitation due to sam-

pling constraints.

Additionally, there is a cascade of statistical modeling assumptions that are made by the

third-party providers to take raw device locational information to the anonymized and aggre-

gated form delivered to the customers (see S1 File for the publicly available description of Air-

sage’s process). The exact details of each private provider’s data processing workflows are their

intellectual property and protected as such. This opaqueness motivates the use of methods to

judge performance critically and the construction of additional models based on common cell

data products for popular environmental applications, such as the one described in this paper.

Because the methods used by the data providers are constantly in development, estimating per-

formance on common observational datasets and with common methods would provide more

clarity and confidence (statistical and otherwise) for cell data’s use in policy and management

applications. In some cases, lack of cellular connectivity in some natural areas may also limit

its usefulness, although GPS-based and application-derived locational methods have overcome

some of this limitation by passing along information when the device is reconnected to a net-

work. It is in a user’s best interest to calibrate the product for their application, when possible,

or consider the uncalibrated information as a relative metric. We demonstrated a simple

method to do a calibration in this paper and provide the data and code for others to work from

and improve as more users apply these types of data products.

While cell data-derived information is an exciting development for researchers and manag-

ers, counterintuitively, we found attempting to use it for a practical application only further
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motivated the need to take more accurate, consistent and unbiased observations of visitation

using traditional methods. Modeling methods are hindered by the lack of availability of train-

ing datasets and would be greatly improved by larger and more uniformly collected observa-

tions. This is especially true regarding machine-learning algorithms [47]. For example, with

small and practical tweaks in the way visitation records are collected at water-access areas,

such as collecting periodic counts of cars and people at specific times, visitation records could

become more harmonized and useful [12,41]. From there, visitation proxies like cell data or

social media-based models can provide a platform for spatial and temporal extrapolation

across broad geographies, as we demonstrate here. The need for such models is not confined

to water-access visitation, as it is relevant to many other similar policy contexts, for example, at

national parks or urban green spaces. The differences in how well our models fit depending on

the visitation data source, with larger more popular locations fit better than small, should be

cautionary to approaches applying the cell data-derived visitation estimates to settings where

there is no similar observational data for comparison.

Fig 6. Visitor origins for Narragansett Beach, RI, USA. Count of visitors by census block group origins for visitors to Narragansett Town Beach, Narragansett RI,

USA, (black star on the map) in August 2017. This monthly origin information exists for each of the 577 access points in our sample.

https://doi.org/10.1371/journal.pone.0231863.g006
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In this paper, we explored only a few dimensions of the information in the cell data-derived

dataset, focusing on estimating visitation. The origin information provided about the visitors

to the water-access sites—monthly visitation by site and census block groups in our case—pro-

vides the type of data needed for a myriad of travel-demand models for recreation [48]. Previ-

ous social media-based work [18] pointed out this potential opportunity, but travel-demand

models typically require more spatially and temporally resolved information than what can be

found currently in data derived from social media. Fig 6 displays origin-destination data for

one site, Narragansett Beach, Rhode Island, for August 2017. Our dataset includes this infor-

mation for all sites and months. More work is needed to calibrate and validate the origin-desti-

nation information provided by cell data products for environmental applications and more

generally [49]. Validating the origin data and fitting travel-demand models is beyond the

scope of this paper and is left for future work. We include the origin-destination data in the

data package associated with this paper for any other users that wish to tackle this natural next

step. As with the visitation estimates, the possibility of using new sources of data for origin-

destination travel-demand models encourages implementation of more commonly worded

and formatted general population and visitor intercept surveys to provide the necessary cor-

roborating and calibrating datasets.

The visitation dataset resulting from the work in this paper is useful for federal, state and

town managers and agencies in the region for any number of applications requiring visitor use

information. For example, state managers may use this information to determine the alloca-

tion of beach monitoring resources, a town shellfish warden may use it to identify the most

actively fished sites, or a tourism board could use it to understand the profile of visitors to pop-

ular natural attractions. Of broader interest in natural resource management and research,

these types of models using cell data and a similar calibration process could be developed for

other areas or for other purposes such as understanding the scale of ecosystem services,

human-wildlife conflict, water consumption demand, or emergency response, for example.
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26. Çolak S, Alexander LP, Alvim BG, Mehndiratta SR, González MC. Analyzing cell phone location data
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