Building a Wildfire-Resistant Home: Codes and Costs

November 2018
Building a Wildfire-Resistant Home: Codes and Costs

PUBLISHED ONLINE:
https://headwaterseconomics.org/wildfire/homes-risk/building-costs-codes

ABOUT HEADWATERS ECONOMICS
Headwaters Economics is an independent, nonprofit research group whose mission is to improve community development and land management decisions.

ABOUT INSURANCE INSTITUTE FOR BUSINESS & HOME SAFETY
The Insurance Institute for Business & Home Safety (IBHS) is an independent, nonprofit, scientific research and communications organization supported solely by property insurers and reinsurers. The mission of the IBHS is to conduct objective, scientific research to identify and promote the most effective ways to strengthen homes, businesses and communities against natural disasters and other causes of loss.

AUTHOR INFORMATION
Stephen L. Quarles, Ph.D. | squarles@ibhs.org | 415-233-1141
Dr. Quarles was the Chief Scientist for Wildfire and Durability at the Insurance Institute for Business & Home Safety when this document was prepared.

Kelly Pohl, M.Sc. | kelly@headwaterseconomics.org | 406-599-7841
Ms. Pohl is a Researcher and Policy Analyst with Headwaters Economics.

ACKNOWLEDGMENTS
This report was made possible through the generous support of the U.S. Forest Service, the LOR Foundation, and the Insurance Institute for Business & Home Safety. It was completed at the request of Park County, Montana as part of the Community Planning Assistance for Wildfire program, which works with communities to reduce wildfire risks through improved land use planning. We would like to thank Ben Elias and Lee Elder with Bechtle Architects for their expertise and guidance in the creation of this report, and Mike Burnett, Daniel Gorham, Kelly Johnston, David Shew, and Paul Summerfelt for reviewing earlier drafts of this document. Any errors or omissions are solely the responsibility of Headwaters Economics.
TABLE OF CONTENTS

I. EXECUTIVE SUMMARY ... 1

II. BACKGROUND ... 7
 - Trends in the Wildland-Urban Interface .. 7
 - How Homes Are Lost to Wildfire .. 8
 - Building Wildfire-Resistant Homes & Communities .. 9
 - The Costs to Homeowners and Builders ... 11

III. WUI CODES AND STANDARDS .. 14
 - Similarities Among the Codes ... 14
 - Specifics of Each Code .. 15
 - Building Components .. 16

IV. METHODS .. 21
 - Cost Data: RSMeans .. 21
 - Model Home and Selection of Features ... 22
 - New Construction Comparison .. 22
 - Retrofit Analysis .. 22

V. RESULTS ... 24
 - New Construction .. 24
 - Retrofit ... 25

VI. ROOF VULNERABILITIES, MITIGATIONS, AND COST ... 27
 - Vulnerabilities .. 27
 - Mitigation ... 28
 - Treatment in Codes .. 29
 - New Construction Comparison .. 29
 - Retrofit Analysis .. 31
 - Co-Benefits and Efficiencies ... 31

VII. EXTERIOR WALLS VULNERABILITIES, MITIGATIONS, AND COST 34
 - Vulnerabilities .. 34
 - Mitigation ... 34
 - Treatment in Codes .. 35
 - New Construction Comparison .. 35
 - Retrofit Analysis .. 36
 - Co-Benefits and Efficiencies ... 37
VIII. DECK VULNERABILITIES, MITIGATIONS, AND COST .. 40
 Vulnerabilities .. 40
 Mitigation ... 40
 Treatment in Codes .. 41
 New Construction Comparison .. 42
 Co-Benefits and Efficiencies .. 44
IX. NEAR-HOME LANDSCAPING VULNERABILITIES, MITIGATIONS, AND COST 45
 Vulnerabilities .. 45
 Mitigation ... 45
 Treatment in Codes .. 45
 New Construction Comparison .. 45
 Co-Benefits and Efficiencies .. 46
X. CONCLUSION ... 47
 Wildfire-Resistant Building Codes and Standards Add Minimal Cost to Homeowners and Builders ... 47
 Key Mitigations Can Be Implemented by Any Builder or Homeowner .. 47
I. EXECUTIVE SUMMARY

This study examines the cost differences between a typical home and a home constructed using wildfire-resistant materials and design features. Decades of research and post-fire assessments have provided clear evidence that building materials and design, coupled with landscaping on the property, are the most important factors influencing home survivability during a wildfire. With one-third of all U.S. homes in the wildland-urban interface and more than 35,000 structures lost to wildfire in the last decade, more communities are considering adopting building codes that require new home construction to meet wildfire-resistant standards.

While codes and standards have been developed for building in wildfire-prone lands, the perceived cost of implementing such regulations is a commonly cited barrier to consideration and adoption by some communities. However, little research has previously examined how much it would actually cost the homeowner or builder to comply with such regulations.

This study compares existing codes and standards for wildfire-resistant construction and estimates cost differences in constructing a wildfire-resistant home compared to a typical home. It also examines the cost of retrofitting a typical home to be more wildfire-resistant. Key findings include:

- A new home built to wildfire-resistant codes can be constructed for roughly the same cost as a typical home.
- Costs vary for retrofitting an existing home to be wildfire-resistant, with some components such as the roof and walls having significant expense. Some of these costs can be divided and prioritized into smaller projects.
- Many wildfire-resistant home features have additional benefits, such as a longer lifecycle and reduced maintenance.

This study was completed in partnership with The Insurance Institute for Business & Home Safety (IBHS) and was prepared at the request of Park County, Montana, as part of the Community Planning Assistance for Wildfire (CPAW) program. CPAW is a program of Headwaters Economics and is funded by the U.S. Forest Service, the LOR Foundation, and other private foundations.

Wildfire-Resistant Codes and Standards

While certain jurisdictional codes have been established, three existing statewide or national building codes and standards guide wildfire-resistant construction. They are:

- the International Code Council’s International Wildland Urban Interface Code (IWUIC),
- the National Fire Protection Association’s Standard for Reducing Structure Ignition Hazards from Wildland Fire (Standard 1144), and

These three documents address construction requirements of the home by component parts (e.g., roof, walls, etc.) and often provide multiple options for complying with the provision. Many of the requirements in these documents are based on standard laboratory testing methods that evaluate the ability of a material or assembly to resist ignition or fire spread. California is one of only a few states to have adopted a wildfire-related building code at the state level for areas of high hazard, but many cities and counties have adopted portions of the IWUIC or other wildfire-related codes. In some communities, the
inaccurately assumed cost of constructing a home to comply with a wildfire-resistant building code is a barrier to implementing such codes.

Wildfire-Resistant Construction Costs

To identify whether the cost of constructing to a wildfire-resistant building code differs from typical construction, this study priced new construction and retrofitting expenses for a three-bedroom, 2,500-square-foot, single-story, single-family home representative of wildland-urban interface building styles in southwest Montana, one of the fastest-growing regions in the country. The typical home was assumed to have an asphalt shingle roof, wood siding, dual-pane windows, and a wood deck. Wildfire-resistant materials were selected for similar aesthetics but also comply with wildfire-resistant building codes. Costs were primarily derived from *RSMeans*, a database that averages material and labor pricing from hundreds of U.S. cities and includes materials, labor, and contractor overhead and profit.

We examined costs in four vulnerable components of the home: the roof (including gutters, vents, and eaves), exterior walls (including windows and doors), decks, and near-home landscaping. Overall, the wildfire-resistant construction cost 2% less than the typical construction (Figure 1.1), with the greatest cost savings resulting from using wildfire-resistant fiber cement siding on exterior walls, in lieu of typical cedar plank siding. While cedar plank siding is typical in the wildland-urban interface of western Montana, fiber cement siding is already a common choice in many regions because of its relative affordability, durability and low maintenance needs. Wildfire-resistant changes to the roof resulted in the largest cost increase, with a 27% increase in gutters, vents, and soffits. The following sections describe the wildfire-resistant mitigations for each component.

![Figure 1.1. New construction costs by component in typical home and wildfire-resistant home.](image-url)
Roof

The roof is arguably the most vulnerable area of the home because of its large surface area. Embers can ignite vegetative debris that has accumulated on the roof surface or in gutters. Embers also can enter the attic through roof and under-eave vents. Also, unenclosed eaves and overhangs can trap embers and heat.

Wildfire-resistant modifications to roofing, vents, fascia, soffits, and gutters added $5,860 (27%) to the cost of the typical roof (Figure 1.2), assuming both homes use Class A (fire-rated) asphalt composition shingles. Retrofitting an existing roof to be wildfire-resistant approached the cost of new construction, totaling $22,010 for the model home. However, many of the wildfire-resistant roof materials have longer lifespan and reduced maintenance needs as compared to typical materials.

Exterior Walls

Exterior walls are especially vulnerable from exposure to flames or prolonged exposure to radiant heat, such as from burning vegetation or a neighboring home. These exposures can potentially ignite combustible siding products. Some plastic siding products (e.g., vinyl) can also melt, exposing underlying sheathing. Wind-blown embers can accumulate in gaps or pass through openings around windows and doors. Glass in a window or door can break from radiant heat or flame contact, exposing the interior of the home. Wildfire-resistant siding and installation design features, tempered glass in windows, wildfire-resistant doors, and weather-stripping can reduce home vulnerability. The relative importance of each of these items varies depending on home-to-home spacing and location of vegetation on the property. Siting on the property relative to topography and typical wind directions can also be important factors in determining necessary external wall mitigations.

Wildfire-resistant construction for exterior walls was $12,190 (25%) less expensive than the typical home, with the cost savings resulting from the difference in using wildfire-resistant fiber-cement siding as compared to cedar plank siding (Figure 1.3). Fiber cement siding is already a common siding option in many regions and several styles mimic the look of wood siding. While the change in siding reduced the cost of the wildfire-resistant home, cost increases for other exterior wall features are $5,370 (29%) more than typical exterior wall features. Retrofitting the exterior walls (including windows and doors) on the
model home totaled $40,750. Depending on neighboring home spacing, not all retrofitting activities may be necessary, but several of these activities will have added benefits such as improved energy efficiency (e.g., multi-pane windows) and reduced maintenance.

Figure 1.3. Exterior walls subcomponents and new construction cost.

Deck
Embers can ignite vegetative debris or other combustible material stored or accumulated on top of the deck. If ignited, the burning deck could expose walls, windows, and doors to radiant heat. Embers can ignite decking materials directly when they accumulate on the surface of vulnerable decking, typically occurring in the gaps between deck boards. Decks can also ignite from below when vegetation or stored materials ignite beneath the deck. Mitigations to make a deck wildfire-resistant include using wildfire-resistant materials for walking surface (e.g., composite boards), using foil-faced bitumen tape on the top surface of the support joists, and creating a noncombustible zone underneath the deck. The wildfire-resistant deck added $1,850 (19%) to the cost of the typical deck (Figure 1.4). Some wildfire-resistant decking materials can have a longer lifespan and require less maintenance than typical materials.
Near-Home Landscaping

If ignited by wind-blown embers, burning vegetation and other combustible materials near the home can allow flames to touch the home or subject it to an extended radiant heat exposure, potentially igniting siding or breaking glass in windows. Maintaining a noncombustible zone of five feet around the entire perimeter of the house and outer edges of the deck can significantly reduce the vulnerability of the home. Mitigations include using rock instead of bark mulch on top of landscape fabric. Placing landscape fabric underneath the area can reduce the growth of weeds, thereby minimizing the maintenance needed by the homeowner. These modifications increased the cost of near-home landscaping by $2,570 (210%) (Figure 1.5). Rock has a longer lifespan than bark mulch and landscape fabric will reduce the maintenance required in the near-home landscaping area.

Figure 1.4. Deck subcomponents and new construction cost.

Figure 1.5. Near-home landscaping subcomponents and new construction cost.
Constructing a Wildfire-Resistant Home Is Similar in Cost to a Typical Home

Laboratory research and post-fire analysis have determined that local ignitability of the home itself, largely determined by the building materials and design features, is an important factor in determining survivability during a wildfire. Existing codes and standards provide ample guidance for how to construct a wildfire-resistant home and reduce vulnerability. This study demonstrates that a new home can be constructed to such standards for approximately the same cost as a typical home, and some of these materials have added benefits such as longer lifespan and reduced maintenance.

City, county, and state governments must weigh many issues when considering new regulations, but the cost of constructing a home to meet wildfire-resistant building codes need not be a barrier. If communities continue to allow growth in wildfire-prone lands, adopting wildfire-resistant building codes may be one of the most effective tools for reducing home loss. Absent such requirements, homeowners and builders can take steps to protect the home by carefully designing and constructing (or retrofitting) the most vulnerable components—the roof, walls, deck, and landscaping—to be wildfire-resistant. The long-term benefits may include longer lifecycle and reduced maintenance.

As recent wildfire disasters have demonstrated, the converging trends of rapid growth in the wildland-urban interface, fuel accumulation after a century of fire suppression, and a warming climate will make wildfires more costly and dangerous in years to come. Just as the cause of this problem is multipronged, there is no single solution to protecting lives and property, and we must employ a suite of solutions that include land use planning, vegetation management, and emergency preparedness. Constructing homes to be wildfire-resistant is a critical and cost-effective piece of the puzzle.

2 Derived from National Incident Coordination Center Annual Reports. https://www.predictiveservices.nifc.gov/intelligence/intelligence.htm
5 2016 California State Building Code, Part 2, Volume 1, Chapter 7A. https://codes.iccsafe.org/public/chapter/content/9997/
II. BACKGROUND

Trends in the Wildland-Urban Interface

Home development in the wildland-urban interface (WUI)—the area where housing and burnable vegetation meet or intermingle—is growing faster than in other land use types in the United States.1 Homeowners in the WUI often are attracted to the natural scenery, access to public lands, privacy, and a rural lifestyle, but these amenities are accompanied by a rapidly growing risk.

Wildfires in the U.S. are bigger and burn longer than just a few decades ago, and danger to communities is increasing. Since the 1990s, the average acreage burned in U.S. wildfires has more than doubled.2 In the western U.S., the average wildfire season is nearly three months longer than in the 1970s,3 and globally it is an average of one month longer.4 Since 2000, more than 3,000 U.S. communities saw 100 acre or larger wildfires within 10 miles of town.5

Current climate projections are likely to exacerbate the problem in the future. Fuel aridity is increasing in the western U.S. and climate trends are expected to expand the potential for wildfire activity.6 Earlier spring snowmelt in the West is also drying fuels in areas previously snow-covered into late spring, expanding the geographic and temporal extent of wildfires.

The spatial and seasonal expansion of wildfire is compounded by the expanding WUI and the increasing presence of people near wildland vegetation. Human-ignited wildfires account for 84% of all U.S. wildfires from 1992-2012, causing wildfires in places and during times of the year that would not typically occur.7

Due to these trends, the costs of wildfire in the U.S. are on the rise. In the last decade, federal fire suppression expenditures cost taxpayers an average of $3.7 billion per year.8 Federal managers estimate that 50 to 95% of suppression costs are directly related to protecting homes in the WUI.9

While these numbers are staggering, the true costs are even higher. Wildfire suppression represents less than 10% of the full costs of wildfire to communities, and communities bear nearly half of the full costs of wildfire.10 Long-term damages can have devastating impacts, such as lost business and tax revenue, physical and mental health effects, watershed rehabilitation, and property and infrastructure repairs. Loss of human life in wildfire disasters causes immeasurable harm to families and communities.

Since 2008, wildfires have damaged or destroyed more than 35,000 structures in the U.S.,11 putting insurance claims at $5.1 billion.12 Although firefighters successfully control most wildfires, WUI disasters generally occur when extreme weather conditions result in rapid fire spread that overwhelms firefighting resources.

Decades of research and post-fire analyses have resulted in guidance that can reduce the vulnerability of buildings located in wildfire-prone areas and improve their ability to survive when wildfire threatens. Nevertheless, few communities have adopted requirements for wildfire-resistant building materials and design in high-risk areas. Two documents establish model building codes and standards: the National Fire Protection Association’s Standard for Reducing Structure Ignition Hazards from Wildland Fire13 and the International Code Council’s International Wildland-Urban Interface Code (IWUIC).14 Each addresses vulnerabilities of structures subjected to wildfire exposures. Most states have not adopted a building code on a state-wide level, but rather have left local jurisdictions to decide whether and how to adopt such model codes as regulations. California is a notable exception, having adopted Materials and Construction Methods for Exterior Wildfire Exposure as Chapter 7A of the state building code in 2008.15
For some local jurisdictions, a barrier to implementing WUI building regulations is the perceived cost. Although research has shown that the benefits of wildfire-resistant construction far outweigh the costs to a community, little research has examined the immediate costs to homeowners and builders. Communities often assume that implementing wildfire-resistant building regulations will cost too much for homeowners and the homebuilding industry. The purpose of this study is to identify the cost differences of constructing or retrofitting a home to wildfire-resistant standards as compared to a typical home, not built to wildfire-resistant standards.

How Homes Are Lost to Wildfire

Home vulnerability is primarily driven by the home’s local ignitability, based on the home materials and design features and landscaping selections and maintenance on the property. Modern wildland fire suppression is extremely successful, quickly controlling 97 to 99% of wildfires. Most WUI disasters occur during the 1 to 3% of events when severe weather conditions and terrain align to create rapid fire growth rates and widespread ember showers leading to extreme fire intensities that overwhelm firefighting capabilities. Post-fire studies have shown that most buildings ignited during a wildfire have been completely destroyed.

Buildings can be ignited from three types of wildfire exposure (listed in order of significance): wind-blown embers (also called firebrands), radiant heat, and direct flame contact.

Embers

Most homes lost in WUI disasters are burned not by the flame front of the wildfire, but rather by direct ember ignition, or from low-intensity fires ignited by embers near the home. In dry and windy conditions often associated with extreme weather events, embers can be cast a mile ahead of the fire front, igniting spot fires across broad areas in advance of the wildfire front. In recent post-fire analyses, it was not uncommon to find more than two-thirds of home losses were from embers or low-intensity fires.

Direct ember ignition can occur when embers enter the building through openings such as vents or an open or broken window. Once inside, embers can ignite furnishings or other combustible materials stored there. Direct ember ignition can also occur when embers accumulate and ignite combustible parts of the building, such as a wood shake roof, combustible decking, or debris accumulated on a roof or in a gutter.

Embers can also result in an indirect ignition scenario if they ignite vegetation or other nearby combustible materials that cause a spot fire, subjecting a portion of a building to either a direct flame contact exposure where the flames touch the building or a radiant heat exposure.

Radiant Heat

Radiant heat can be generated by burning tree canopies or shrubs, landscape vegetation, neighboring buildings, or other nearby fuel. The vulnerability of a building to radiant heat depends on the intensity and duration of the exposure. If the radiant heat level is high enough and the duration long enough, it can result in the ignition of a combustible product (for example, wood siding), or it can break the glass in windows and doors, making ember-ignition of interior materials more likely. Exposures to lower levels of radiant heat can pre-heat materials, making them easier to ignite if exposed to flames.
Direct Flame Contact

Direct flame contact from the wildfire as it passes the property can be the trigger that leads to ignition of a building component, such as combustible siding. Once a building component ignites it is easier for the fire to enter the building through the component or through the stud cavity behind a component, such as wall siding. Fire can also spread vertically up the wall, impinging on and possibly breaking glass in windows or doors, or enter the attic through the eave or eave vent. Once glass breaks, embers can readily enter the building and ignite interior furnishings.

Building Wildfire-Resistant Homes & Communities

Although the factors affecting whether a home survives a wildfire are complex—including weather, topography, fuels, and fire suppression capabilities—empirical research and laboratory experiments have demonstrated that building construction and design play a major role in home survival. Building wildfire-resistant homes and communities requires addressing all wildfire vulnerabilities, including provisions to make buildings less vulnerable to ember exposures, reducing the opportunity for the fire to reach the building, and minimizing the opportunity for radiant heat exposures from landscaping vegetation, outbuildings, or other nearby combustible materials.

Reducing home losses to wildfire requires a coupled approach, addressing two primary sources of home vulnerability:

1. The selection, location, and maintenance of vegetation and other combustible materials within approximately 100 feet surrounding the home, referred to as the “home ignition zone” (HIZ).

2. The building materials and design features used in construction of the home itself.

Home Ignition Zone (HIZ)

Developing wildfire-resistant properties for HIZ (also referred to as defensible space) generally involves managing vegetation, landscaping, debris, and other combustible materials (like wood piles and outbuildings) in a 100-foot area around the home. Research has found that defensible space beyond that radius has little effect on a home’s survivability. In general, the area is broken into three subzones:

- Zone 1: 0 to 5 feet;
- Zone 2: 5 to 30 feet; and
- Zone 3: 30 to 100+ feet.

[Figure 2.1. The Home Ignition Zone (HIZ), comprising three sub-zones.]
The exact recommendations for each zone will vary depending on topography, the siting of the home on the property, and the vegetation type, but the objectives are to reduce the energy of the fire and minimize the chance it will burn directly to the home, and, if present, to allow for safe fire suppression activities to protect the home.

Reducing potential fire energy and spread in Zones 2 and 3 involves carefully selecting and maintaining vegetation, creating separation between plant groupings, and eliminating vertical continuity of fuels, also known as ladder fuels. Information about creating, designing, and maintaining defensible space for different climatic regions, fuel types, and topography is readily available through state and local agencies and will not be further addressed in this report.

Zone 1, also called the near-home zone or the “noncombustible zone,” includes the 0- to 5-foot area immediately adjacent to the home where, if ignited, landscaping and other combustible materials could spread to and ignite the home. The strong likelihood of ember attack in most wildland fire events means that homes are most vulnerable to ignition in this near-home area. Although a completely noncombustible zone is desirable (e.g., use of rock mulch or other hardscape features), vegetation considered to be less combustible could also be used. This “less-combustible” vegetation would be restricted to an irrigated lawn and non-woody, low-growing, herbaceous vegetation, both of which must be well-maintained. Given the ability of wind-blown embers to pass over the defensible space created on most properties, incorporating a noncombustible zone provides additional protection by reducing the opportunity for a flame to directly contact the home as a result of ember-ignited combustibles located immediately adjacent to the home. The near-building zone is described in additional detail in Chapter VIII.

Building Materials & Design Features

The materials used to construct a home and their arrangement and design can have a major influence on survivability. Several components of single-family homes are most vulnerable to wildfire and must therefore be built and designed to specifically withstand ignition from embers, radiant heat, and direct flame contact. These components include:

- Roof, including vents, gutters, and eaves/soffits
- Exterior walls, including siding, windows, and doors
- Decks and other exterior attachments.

Definitions

Many of the terms used to describe favorable performance are used interchangeably, even though they may have different technical definitions. Different wildfire codes may have discrepancies, but are generally based on traditional laboratory tests that determine a material’s response or reaction to fire.

Wildfire-Resistant. A general term used in this report to describe a material and design feature that can reduce the vulnerability of a building to ignite, either from wind-blown embers or other wildfire exposures.

Fire-Resistant. Materials and systems that resist the spread of fire from the fire-exposed to a non-exposed side of an assembly (i.e., a wall or roof).

Ignition-Resistant. Material that resists ignition or sustained flaming combustion. Materials designated ignition-resistant have passed a standard test that evaluates flame spread on the material.

Noncombustible. Material of which no part will ignite or burn when subjected to fire or heat, even after exposure to moisture or the effects of age. Materials designated noncombustible have passed a standard test.
Given the relatively large surface area of the roof, this component generally is considered the most vulnerable. One recent study found that window preparation was especially important, but defensible space in the near-home area was as important as building construction. Because of the many complex ways wildfire interacts with the landscape and fuels—including combustible materials used in construction—home vulnerability must be addressed through both property-level landscaping and the building materials and design.

Even if constructed with wildfire-resistant materials and design features, the home and its landscaping must be maintained to retain the necessary level of performance. The potential for extended radiant heat exposure and/or direct flame contact will depend on the defensible space and on the proximity of any neighboring homes or outbuildings. Therefore, overall land use planning decisions—including where homes should or should not be allowed on the landscape, proximity of neighboring homes, and siting of a home on an individual lot relative to neighboring structures, topography, and primary wind direction—are also important factors.

The Costs to Homeowners and Builders

The cost of building a single-family home using wildfire-resistant materials and design has not been previously analyzed in detail. Studies at the individual home level have mostly been tied to creation and management of defensible space. Australian studies have found the cost for retrofitting a home to be wildfire-resilient averaged $19,000, and the cost of preparation is approximately $8,000 (U.S. 2018 dollars), but most of the modifications were related to management of the vegetation on the property and purchase of equipment to defend the home, not the construction of the home itself. Similarly, little research exists on the effects of WUI regulations on home or property values. A 2017 report by the National Institute of Building Sciences estimated a savings of $4 for every $1 of additional construction cost by implementing the IWUIC at the community scale.

Researchers have investigated the costs of building codes that address other natural disasters, such as hurricanes and tornadoes. A recent study in Moore, Oklahoma, found that implementation of new regulatory building codes to address severe tornado risk did not impact the quantity of homes sold, price of homes, or the number of permits for construction. An analysis of Florida’s state building code—implemented after the devastation of Hurricane Andrew—not only was successful in reducing losses by up to 72% from major windstorm events, but also realized a benefit of $6 for every $1 of added cost.

In addition, some research has shown that buyers were willing to pay a premium for safety. In Florida, homes built under more recent, stronger building codes saw a 10% higher price than older homes built before the code change. Anecdotal evidence from wildfire-prone areas suggests that some housing markets use wildfire-resistance as an advertising and marketing strategy.

To address the research gap in the cost to construct a home to meet wildfire-resistant building codes, this study compares the three most well-known wildfire-resistant building codes and then examines the cost to build a home to those requirements.

11 Derived from National Incident Coordination Center Annual Reports. https://www.predictiveservices.nifc.gov/intelligence/intelligence.htm

15 2016 California State Building Code, Part 2, Volume 1, Chapter 7A. https://codes.iccsafe.org/public/chapter/content/9997/

Names of the Home Ignition Zone subzones differ across North America. For simplicity, we refer to them in this paper simply as zones 1, 2, and 3.

Before examining the cost of constructing a home built to wildfire-resistant standards, it is helpful to understand the primary guiding documents for wildfire-resistant construction in the U.S. This chapter compares the three most well-known building code options for construction in wildfire prone areas: the International Code Council’s Wildland-Urban Interface Code (IWUIC),¹ the National Fire Protection Association Standard for Reducing Structure Ignition Hazards from Wildland Fire (NFPA 1144),² and Chapter 7A in the California Building Code (Materials and Construction Methods for Exterior Wildfire Exposure).³ Even though building codes are generally reserved for new construction or significant remodels that meet certain thresholds, they can be useful for improving resistance to wildfire risks when retrofitting.

This report focuses on the portion of the documents related to building design and construction, although the three codes incorporate additional information related to home survival during wildfire such as infrastructure (like water supply and roads), landscaping and site requirements, and fire protection systems. Some communities may adopt a stand-alone code specifically designed to address wildfire in at-risk portions of the community (generally called a “WUI Code”), but wildfire-related issues may also be incorporated into a variety of other existing regulations (e.g., building codes, zoning regulations, landscaping ordinances).

Few states have adopted wildfire-related codes at the state level, with some notable exceptions. California adopted Chapter 7A as part of the California Building Code in 2008. NFPA 1144 has not been adopted in its entirety by any state. In 2018, the State of Washington adopted portions of the 2018 IWUIC into its building code, specifically those sections related to ignition-resistant construction (IWUIC Section 504).⁴

Similarities Among the Codes

Each of the three wildfire-related documents (IWUIC, NFPA 1144, and California Chapter 7A) is similar in some respects. All acknowledge the importance of vegetation and vegetation management. In the IWUIC, construction requirements are tiered depending on the wildfire hazard zone. These zones typically are referred to as “fire hazard severity zones” – the levels escalate from “moderate” to “very high” or “extreme.”

Construction requirements divide the home or building into component parts (such as roof, exterior wall, vents, and decking) and provide material or assembly (i.e., “system”) options for the component (or assembly). An example of an assembly would be an exterior wall that includes the siding material, sheathing, framing, and other components used in the wall construction. In many cases, multiple options for complying with the provisions for a given component are provided. These options are separated by “or” statements in the code or standard. While these options are compliant, they do not necessarily provide equivalent protection. Table 3.1 summarizes the building requirements for the principal components specified in the IWUIC, NFPA 1144, and Chapter 7A.

Many of the material and assembly requirements in these codes and standards are based on “reaction to fire” and “resistance to fire” standard test methods. “Reaction to fire” standards provide procedures to evaluate whether a material can be considered noncombustible or ignition-resistant. “Resistance to fire”
Standards provide procedures to evaluate the ability of an assembly to resist fire spread from the fire-exposed side to the non-fire-exposed side.

The response of the building and construction materials to a direct ember exposure is largely either assumed or inferred from flame or radiant heat exposures. Until recently the ability to generate a realistic ember exposure in a laboratory environment has been lacking. Based on efforts by researchers at the National Institute of Standards and Technology (NIST), an apparatus that can generate an ember exposure was developed. This design has now been modified and adopted by others, including the Insurance Institute for Business & Home Safety. Standard test methods may be developed in the future.

Specifics of Each Code

Each of the three wildfire-related documents (IWUIC, NFPA 1144, and California Chapter 7A) is described and compared below and in Table 3.1

International Code Council: International WUI Code (IWUIC)

Chapter 5 in the IWUIC provides specifications for three ignition-resistant (IR) construction classes, designated IR 1, IR 2, and IR 3. The ignition-resistant class level depends on the fire hazard severity zone, and whether the water supply and defensible space requirements are in compliance. IR 1 has the most restrictive requirements and IR 3 the least restrictive. The three-tier set of requirements is unique to the IWUIC. By comparison, NFPA 1144 and Chapter 7A in the California Building Code have only one level of building construction requirements, which are applicable regardless of the fire hazard severity zone ranking.

The IWUIC provides explicit language about the need to maintain buildings, vegetation, and defensible space. Maintenance is a critical component for homes and landscapes.

NFPA 1144: Standard for Reducing Structure Ignition Hazards from Wildland Fire

NFPA 1144 is designated as a standard, but if adopted by a jurisdiction, it can serve as a building code. This standard provides a methodology for assessing the potential for wildland fire ignition around existing buildings and provides minimum requirements for reducing the potential for ignition. A feature of this standard, as well as other wildfire-related building codes used in the United States, is linking building survival with vegetation selection and placement on the property, and construction materials and design.

This standard provides the user with information to do an assessment of the building components and vegetation on the property (Chapter 4). The assessment results in a list documenting materials and components used on or attached to the building, location on the property relative to topographical features and location on slope, and location of vegetation. The standard also provides specific minimum requirements for new construction (Chapter 5) and information for modifying vegetative fuels in the structure ignition zone.
California Building Code: Chapter 7A

Chapter 7A of the California Building Code was implemented in two phases. It is applicable in all fire hazard severity zones in State Responsibility Areas (SRA) and only in Very High Fire Hazard Severity Zones (VHFHSZ) in Local Responsibility Areas (LRA), as defined by CAL FIRE. In the SRA, fire protection is provided by the state. In LRA, fire protection is not provided by the state, but rather by the local jurisdiction.

Like the other codes and standards, Chapter 7A acknowledges the importance of well-maintained near-home (landscaping) vegetation to a fire-safe building by requiring compliance with Public Resource Code (PRC) 4291 and Government Code (GC) 51182. PRC 4291 applies to SRA land and GC 51182 applies to LRA land.

Building Components

The IWUIC, NFPA 1144, and Chapter 7A typically discriminate between the performance of materials and designs based on the response to direct flame contact or radiant heat exposure. However, as research results provide options, some sections are being added to address ember exposures. Since an ember exposure that results in damage or loss of a building is ultimately caused by a flaming and/or radiant exposure, selecting materials based on these exposures can be useful.

Roofs

Building codes rely on a standard test method to provide a fire rating for roof coverings. This standard test incorporates three separate components to evaluate the fire rating of the covering: (1) fire-resistance (fire-penetration), (2) flame spread, and (3) the ember generation potential of the roof covering and assembly (Figure 3.1). The “Class A” fire rating is the highest level of protection.

This test method does not address vulnerabilities that can occur at the edge of the roof, particularly where a gap occurs between the roof covering and the roof deck. Codes acknowledge this vulnerability and require that any gaps between the roof covering and the roof deck at the edge be plugged with a fire-stop or “bird-stop” material.

Roof vulnerabilities and mitigations are discussed in more detail in Chapter VI.
Wall and Eave Assemblies
For wall and eave assemblies, building codes provide the option of using noncombustible materials or combustible materials that meet fire-resistance and/or flame spread test procedures. These tests address only one of the vulnerabilities of a wall—the ability of fire to penetrate from the outside to the inside of the building. They do not directly address flame spreading up or laterally over the siding. Depending on the flame spread characteristics of the material, use of the fire-resistance rating to the exclusion of other requirements may just transfer the vulnerability of an exterior wall to another component (e.g., to a window, eave, vent) (Figure 3.2). Therefore, conservative use of combustible materials that meet fire-resistance test procedures is recommended.

Exterior wall vulnerabilities and mitigations are discussed in more detail in Chapter VII.

Decks and Attachments
Treatment of decks and other attachments in the building codes is challenging and complex. Like walls and eave assemblies, building codes provide the option of using noncombustible materials or combustible materials that meet fire-resistance test procedures. There are few noncombustible decking products available. The three wildfire-related documents reviewed in this report treat combustible materials differently.

IWUIC and NFPA 1144 limit combustible decking materials to only those that are ignition-resistant, which excludes the use of the most commonly used decking products (such as solid wood without fire-retardant treatment and plastic composite decking). However, Chapter 7A restricts the use of combustible decking products based on the heat release rate, which is the amount of energy released after the deck is ignited by a specified gas burner. Solid wood and plastic composite decking products comply with Chapter 7A, but not with IWUIC and NFPA 1144.

Chapter 7A explicitly states that only the walking surfaces of the deck are considered in the standard—the structural support members are not. IWUIC and NFPA 1144 both allow the use of a one-hour fire-resistance-rated assembly as one option for complying with the deck requirements. The one-hour-rated assembly implies the use of either a horizontal or vertical deck enclosure, thereby implicitly addressing the support members. Although not explicitly stated, this effectively excludes the use of deck boards unless, for example, a deck platform is placed on top of a lightweight concrete surface. If traditional deck boards were allowed without other ventilation or moisture removal requirements, moisture-related degradation (decay in wood timbers and joists, corrosion of metal fasteners and connectors) would eventually develop in the under-deck area.
Deck vulnerabilities and mitigations are discussed in more detail in Chapter VIII.

Fencing is not addressed in any of the reference codes or standards. Guidance provided by education and outreach organizations state that a noncombustible section of fencing, typically 5 to 8 feet in length, should attach to an exterior wall to stop the spread of fire from the fence to the home.

Vents

Except for Chapter 7A, reducing ember intrusion through vents is accomplished exclusively by specifying maximum mesh size for the screen material and by restricting where vents can be located. The allowable screen mesh size in these documents ranges from about 1/16-inch to 1/4-inch. Chapter 7A specifies screen mesh information, but also allows vents with design features that resist entry of embers and flames. A standard test method to evaluate resistance to embers and flame intrusion has been developed and published by the American Society for Testing and Materials (ASTM) and accepted for use by the California Office of the State Fire Marshal.6

NFPA 1144 and IWUIC restrict the use of vents in the under-eave area. Chapter 7A allows the use of vents in under-eave areas if the specified provisions have been met. The restriction of vents in an under-eave area comes largely from anecdotal evidence that these areas would be vulnerable to ember entry. Recent testing at the IBHS Research Center and at NIST has demonstrated that ember entry was more dependent on the eave construction than on the general eave area. Vents in open-eave construction (i.e., vents in the between-joist blocking) were more vulnerable to ember entry than vents located in a soffited eave. Gable end vents were particularly vulnerable to ember entry. This suggests that a design approach to vent location and type in high-hazard areas would also be valuable in minimizing the vulnerability of buildings to wildfire.

Vents are addressed in more detail in Chapter VI in conjunction with roof vulnerabilities and mitigations.

Near-Home Zone

Although the near-home noncombustible zone (the area within a 5-foot perimeter around a house) has been incorporated into educational materials developed and distributed by education and outreach organizations, including IBHS, NFPA-Firewise, and Nevada’s Living with Fire, this guidance is not explicitly specified in any of the codes or standards. The vulnerability of the near-home zone is important when considering ember accumulation exposures either on or adjacent to exterior-use materials and assemblies.

Near-home vulnerabilities and mitigations are discussed in more detail in Chapter IX.

3. 2016 California State Building Code, Part 2, Volume 1, Chapter 7A.
Table 3.1: Comparison of WUI Codes and Standards

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>Class A fire-rated covering required. Plug gaps at the end (i.e., bird-stop) and underlayment full length of any valleys.</td>
<td>Class A fire-rated covering required. Roof covering must be tested using all components in the as-built assembly. Where gaps exist between covering and roof deck, a roll-roofing product shall be laid over the entire deck surface and gaps at end and ridge plugged with a noncombustible material.</td>
<td>Requires a fire-rated covering, actual rating (Class A, B or C) dependent on fire hazard severity zone. Plug gaps at ends (i.e., bird-stopped, fire-stopped). A minimum 36-inch-wide cap sheet must be installed under metal valley flashing.</td>
</tr>
<tr>
<td>Eaves & Fascia</td>
<td>Eaves and soffits protected by ignition-resistant material or one-hour fire-resistant-rated construction, or 1-inch fire-resistant treated lumber, or ¾-inch plywood. Fascias required, protected by ignition-resistant material or 1-hour fire-resistant-rated construction, or 2-inch dimensional lumber.</td>
<td>Eaves must be enclosed with fire retardant-treated wood, ignition-resistant materials, noncombustible materials, or materials exhibiting resistance to wildfire penetration. Metal drip-edge required on eave edges.</td>
<td>Soffited or open-eave allowed. If open-eave, nominal 2x material required as blocking.</td>
</tr>
<tr>
<td>Gutters</td>
<td>Noncombustible gutter (vinyl gutters not allowed). Use of gutter cover is required.</td>
<td>Use of noncombustible gutter and gutter cover device required.</td>
<td>Metal and vinyl gutters allowed. Installation of a gutter cover is required.</td>
</tr>
<tr>
<td>Vents</td>
<td>Vents covered by 1/4-inch mesh screen. Vents in exterior walls shall not exceed 144 square inches or shall be designated/approved to prevent flame or ember penetration into the structure. Vents not allowed in under-eave areas. Gable end and dormer vents shall be >10 feet from lot line. Underfloor vent openings located as close to grade as practical.</td>
<td>Vents covered by 1/8-inch mesh screen or use of vents designed to resist flame intrusion and embers. Vents not allowed in under-eave area.</td>
<td>General requirement for vents to resist intrusion of embers and flame through ventilation openings. 1/16- to 1/8-inch mesh screening is specified. Vents not allowed in under-eave area unless vent has been accepted as ember- and flame-resistant.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Exterior Walls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siding</td>
<td>Specifies compliance with one of five methods: 1) one-hour fire-resistant-rated construction, 2) approved noncombustible materials, 3) heavy timber or log wall construction, 4) fire-retardant-treated wood on exterior side (rated for exterior use), or 5) ignition-resistant materials on exterior side.</td>
<td>Specifies ignition-resistant material (including exterior fire-retardant-treated wood) or an assembly with at minimum a one-hour fire rating. Six-inch noncombustible vertical separation required between a horizontal surface and siding.</td>
<td>Four options for compliance: 1) noncombustible material, 2) ignition-resistant material, 3) heavy timber construction, 4) log wall assembly, or 5) assembly complying with State Fire Marshal 12-7A-1 (10-minute direct flame exposure test).</td>
</tr>
<tr>
<td>Windows</td>
<td>At a minimum, all windows (including doors and skylights) shall be dual pane (multilayered) with tempered glass, or glass blocks or fire-resistant rated of not less than 20 minutes.</td>
<td>Requires all windows (including in doors and skylights) to be tempered glass, multilayered glazed panels, glass block, or fire-resistance rating of not less than 20 minutes.</td>
<td>Four options for compliance: 1) multi-pane glazing with a minimum of one tempered pane, 2) glass block units, 3) fire-resistance rating of not less than 20 minutes, or 4) meeting performance requirements of SFM 12-7A-2.</td>
</tr>
<tr>
<td>Doors</td>
<td>Approved noncombustible construction, solid-core wood not less than 1¾-inches thick, or fire protection rating of not less than 20 minutes.</td>
<td>Solid-core wood not less than 1¾-inches thick, constructed of noncombustible material, or fire protection rating of not less than 20 minutes.</td>
<td>Four options for compliance: 1) noncombustible exterior surface or cladding, 2) solid core wood meeting thickness specifications, 3) fire resistance rating of not less than 20 minutes, or 4) meeting the performance requirements of SFM Standard 12-7A-1.</td>
</tr>
<tr>
<td>Decks</td>
<td>One-hour fire-resistant-rated construction, heavy timber construction, or constructed with noncombustible materials, or fire-retardant-treated wood or other ignition-resistant materials. A deck extending over a slope greater than 10% must be enclosed to within 6 inches of the ground using same exterior wall construction standards.</td>
<td>Requires heavy timber, noncombustible materials, fire-retardant-treated wood, or other ignition-resistant material, or be a one-hour fire-resistance-rated assembly.</td>
<td>Only applies to the walking surfaces of the deck. Four options for compliance: 1) ignition-resistant material that complies with SFM Standard 12-7A-4, 2) exterior fire-retardant wood, 3) noncombustible material, or 4) comply with SFM Standard 12-7A-4.</td>
</tr>
<tr>
<td>Near-Home Landscaping</td>
<td>Does not explicitly address near-home landscaping but addresses fuel modifications in 30+-foot defensible space area.</td>
<td>Does not explicitly address near-home landscaping but addresses location and maintenance of vegetation in two zones, including from the home to 30-feet, and from 30-feet to 100-feet, or to the property line.</td>
<td>Hazardous vegetation and fuel management required based on different fire hazard severity zones. Does not explicitly address near-home landscaping.</td>
</tr>
</tbody>
</table>
IV. METHODS

This study involves two cost analyses: (1) the cost of constructing a wildfire-resistant home compared to a typical home; and (2) the cost of retrofitting an existing home to be more wildfire-resistant. Similar methods were employed for both analyses. For the wildfire-resistant home, we selected materials that would comply with one or more of the codes or standards described in Chapter III.

Cost Data: *RSMeans*

For both analyses, we used *RSMeans*,¹ a national database of construction materials, labor, and contractor overhead and profit costs. *RSMeans* is updated quarterly, includes average construction cost indices from more than 700 cities, and uses the latest negotiated wages across 21 building trades. It includes national averages as well as cost indices to compare regional variability across the country.

While using a national database like *RSMeans* provided consistency for this study, it also has limitations. The values included in the database are averages and do not reflect local conditions such as product and contractor availability, managerial efficiency, competitive conditions, or local building or union requirements. In reality, many wildland-urban interface communities are growing rapidly and face highly competitive conditions and a short supply of contractors, which may raise overall prices for any style of home—wildfire-resistant or otherwise. Demand for contractors can also be especially high during reconstruction periods following wildfire disasters.

When *RSMeans* provided multiple options for building materials, we used mid-range products typical of construction in southwest Montana. Expert judgment and guidance was provided by Bechtle Architects² in Bozeman, Montana, who queried the *RSMeans* database for this study. In some instances, wildfire-resistant materials were not available in *RSMeans*. For these cases, we acquired pricing directly from the manufacturer or received bids from retailers or local distributors and added labor, overhead, and profit rates at national averages using the appropriate cost indices from *RSMeans*.

The monetized values include only the immediate costs of construction and do not account for long-term maintenance and replacement costs of the features. In many cases, wildfire-resistant materials have added benefits such as reduced maintenance, longer lifespan, and energy efficiency. We have noted where such co-benefits exist, even when they are not fully quantifiable.

![Figure 4.1. Architectural rendering of the home used in this study. The home is representative of typical construction in Park County, Montana and is approximately 2,500 square feet.](image-url)
Model Home and Selection of Features

To compare costs, we required a baseline home representative of typical building styles found in the wildland-urban interface in southwest Montana, one of the fastest-growing WUI regions in the country. The home used in this study is a mid-range home constructed in 2017 in Park County, Montana. It is a three-bedroom, 2,500-square-foot, single-level, single-family home with two exterior decks and a two-car garage. It was constructed for approximately $140 per square foot, or a total of $350,000 (Figure 4.1).3

For the purposes of this analysis, we made many assumptions about the typical home features, some of which would reduce or increase the cost difference with the wildfire-resistant home. We made these assumptions based on expert input about regional preferences for southwest Montana. The primary assumptions include that the typical home has a Class A asphalt roof, cedar plank siding, and a wood deck. Using a home typical of southwest Montana will make the cost comparisons less applicable in other regions due to different aesthetic preferences, climatological differences, functional needs, and local building code requirements. For several features, we include alternative product options to show how different choices and regional preferences may affect cost.

We identified the individual features on the home that make it vulnerable to wildfire, based on the best available science about home ignitions. We included features from four components of the home: roof, exterior walls (including windows and doors), deck, and landscaping.

New Construction Comparison

To compare the cost of constructing a wildfire-resistant home with the typical home, we priced: (a) typical building materials (including labor and contractor overhead and profit) representative of typical WUI construction in southwest Montana, and (b) wildfire-resistant building materials (including labor and contractor overhead and profit) that comply with or exceed the International WUI Code (IWUIC) for the vulnerable features. We did not only price materials, but also included labor and contractor overhead and profit because installation of some wildfire-resistant features may require more labor. We did not compare features that are unlikely to pose wildfire vulnerability issues (for example, the foundation, exterior building sheathing and framing, and interior walls).

This report shows a percentage increase in changing from typical to wildfire-resistant components but does not reflect a percentage increase as related to the entire cost associated with constructing a home. Because we did not evaluate the cost of constructing the entire home using RSMeans, it is not possible to extrapolate precisely what percentage of the total home these costs represent. However, the costs associated with constructing wildfire-resistant components represent only a fraction of the total costs of constructing a home.

Retrofit Analysis

To examine the cost of retrofitting vulnerable features in the baseline home with wildfire-resistant materials, we priced: (a) labor costs for demolition of typical building materials (including contractor overhead and profit), and (b) wildfire-resistant building materials (including labor and contractor overhead and profit) that comply with or exceed the IWUIC. Where possible, we include the total cost of retrofitting the feature in the baseline home as well as a per-unit cost.

It is important to note that RSMeans’ labor costs for demolition do not include disposal costs, onsite retaining of material (i.e., a dumpster), nor do they account for challenges finding contractors willing to
take on small demolition projects. Finding a contractor willing to take on a relatively small job, like swapping out a gutter or roof vent, may be difficult in many markets.

However, some of the retrofitting techniques described here can be combined into a larger job that may be more attractive to contractors or completed independently by handy homeowners. Where possible, we have tried to indicate the difficulty of the retrofitting job for those inclined to D-I-Y. We have also tried to rank retrofitting tasks for each vulnerable feature to help identify where homeowners can achieve the most benefit for the least cost.

2 Bechtle Architects: http://bechtlearchitects.com/
3 Andrew Ford, Ford Woodworks, LLC, Clyde Park, Montana. Personal communications.
V. RESULTS

New Construction

This analysis finds that a new home constructed to comply with a wildfire-resistant building code, as defined by the International WUI Code (IWUIC), can be constructed for roughly the same cost as a typical home. In fact, our model wildfire-resistant components cost approximately $1,910, or 2% less than the typical home (Table 5.1). The roof, deck, and landscaping all added costs, while switching from wood to fiber cement siding for the exterior walls created a cost savings. Proportionally, the wildfire-resistant landscaping saw the greatest increase over the typical home, but in absolute dollars, the roof added the most cost (Figure 5.1).

<table>
<thead>
<tr>
<th>Table 5.1: Cost and Proportional Difference of Components in New Construction for Typical and Wildfire-Resistant Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Roof</td>
</tr>
<tr>
<td>Roofing</td>
</tr>
<tr>
<td>Vents</td>
</tr>
<tr>
<td>Soffit & Fascia</td>
</tr>
<tr>
<td>Gutters</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Exterior Walls</td>
</tr>
<tr>
<td>Siding</td>
</tr>
<tr>
<td>Sheathing</td>
</tr>
<tr>
<td>Doors</td>
</tr>
<tr>
<td>Windows</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Deck</td>
</tr>
<tr>
<td>Decking surface</td>
</tr>
<tr>
<td>Framing</td>
</tr>
<tr>
<td>Fascia</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Near-Home Landscaping</td>
</tr>
<tr>
<td>Mulch (bark vs. rock)</td>
</tr>
<tr>
<td>Landscape Fabric</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>All Components</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Retrofit costs for each component are detailed in Table 5.2. The cost of retrofitting the roof and exterior walls for the model home are both substantial if undertaken in whole. Retrofitting the roof, assuming removal of wood shingles and replacement of vents and gutters, approaches the cost of new construction at $22,000. Retrofitting exterior walls, assuming removal and demolition of vinyl siding and wood-framed windows, came to $40,350, which is more than the cost of new construction due to the expense of demolition of siding and sheathing. We did not price the cost of retrofitting the deck or landscaping, as these would be similar to new construction, but variable depending on demolition of existing conditions. Although retrofitting the roof or exterior walls in their entirety has substantial costs, there is also significant benefit as these can be especially vulnerable areas of the home.

Further, roof and exterior wall retrofitting can be broken into phases and prioritized based on existing conditions and neighborhood and landscape context. For example, many homes already have asphalt shingles that provide wildfire-resistance, so they would only need new vents and gutters to improve their wildfire-resistance. Homes that are 30 feet or more from neighboring structures and that have well-maintained landscaping are unlikely to be exposed to extended radiant heat and may not need siding to be replaced everywhere on the home. Homeowners may be able to prioritize siding replacement only at locations where radiant heat exposures are more likely (such as where other buildings are nearby, where walls face slopes, or on sides of the home facing common wind aspects) or in areas where flame contact from ember-ignited debris or vegetation is possible (such as at roof-to-wall junctions or within approximately 6 inches of the ground).
Table 5.2: Cost of retrofitting roof and exterior wall from typical to wildfire-resistant. Costs shown are for model home and assume removal of wood shingles on the roof and wood siding on the walls, to be replaced with the same wildfire-resistant materials described in the new construction scenario.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td></td>
</tr>
<tr>
<td>Roofing</td>
<td>13,180</td>
</tr>
<tr>
<td>Vents</td>
<td>370</td>
</tr>
<tr>
<td>Soffit & Fascia</td>
<td>5,600</td>
</tr>
<tr>
<td>Gutters</td>
<td>2,860</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$22,010</td>
</tr>
<tr>
<td>Exterior Walls</td>
<td></td>
</tr>
<tr>
<td>Sheathing and Siding</td>
<td>20,580</td>
</tr>
<tr>
<td>Doors</td>
<td>8,120</td>
</tr>
<tr>
<td>Windows</td>
<td>12,050</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$40,750</td>
</tr>
</tbody>
</table>

In the following chapters, detailed analyses of vulnerabilities, mitigations, new construction cost differences, and retrofitting options are provided for each component of the home. Detailed data tables can also be downloaded at https://headwaterseconomics.org/wildfire/homes-risk/building-costs-codes-appendix. For the roof, exterior wall, and deck components, prices for alternative materials are included to show the range of potential costs. Prioritization of retrofitting activities and co-benefits are also described.
VI. ROOF VULNERABILITIES, MITIGATIONS, AND COST

This chapter analyzes the vulnerabilities, mitigations, code requirements, and detailed costs related to constructing a wildfire-resistant roof. For the purposes of this study, roof is defined as the peak of the roof ridgeline to and including the gutters and under-eave area. This includes the roofing materials and underlayment, ridge vents, soffit vents, soffit covering, and gutters.

Vulnerabilities

Roof coverings are vulnerable because of their relatively large surface area that can be exposed to wind-blown embers. Complex roof shapes that include dormers, split-level designs, and components with other roof-to-wall junctions increase the vulnerability of the roof because embers can accumulate in these joints. In these same junctions, vegetative debris can also accumulate, providing fuel that is easily ignited by embers (Figure 6.1).

The edge of the roof where a gutter can be attached and locations where the roof intersects with a vent can also be vulnerable locations, particularly when vegetative debris has accumulated in the gutter or at the inlet to the vent (Figure 6.2).

Roof vents are important for circulation of air to remove excess moisture in the attic but are also susceptible to ember and flame entry. The under-eave area is also vulnerable as construction detailing allows embers to be trapped in gaps. An open eave also traps heat, if near home vegetation (or other combustibles) ignite. If under-eave vents are present, they can be an entry point for embers to pass into the attic.

Figure 6.1. Complex roof showing roof-to-siding junction where pine needle debris has accumulated on top of asphalt composition shingle roofing (a Class A fire-rated covering), adjacent to wood shingle siding. The vulnerable component of this roof is the siding, should the pine needle debris ignite. Photo: Stephen L. Quarles

Figure 6.2. Debris accumulation at the entry of a (plastic) ridge vent. Ember ignition of this debris could result in ignition of the ridge vent. Photo: Stephen L. Quarles
There are two types of ventilation openings to provide circulation in attic spaces: one for inlet air and one for exiting air. Inlet air comes from vents located in the under-eave area, at the edge of the roof. Under-eave vents are located either:

- in the blocking, in the case of open-eave construction (Figure 6.3), or
- in the soffit material, in the case of soffited-eave construction (Figure 6.4).

Exiting air leaves through vents located on or near the roof. Exiting air vents are either:

- placed at the ridge of roof (called “ridge vents”),
- placed in an off-ridge location on the roof, or
- located on the exterior walls, at the end of the home (called “gable end vents”).

Ridge and off-ridge vents are considered “through-roof” vents. Embers and flames can enter the attic space of a home through any of these vent openings.

Mitigation

Use of a Class A fire-rated roof covering is the most common mitigation strategy. Depending on the roof covering, an underlayment with an enhanced fire resistance rating may be needed to attain the desired fire rating. In addition, removal of debris from the roof and gutter on a regular basis can reduce the likelihood of ignition of this material from embers when wildfire threatens the house.

Use of flashing where the roof meets other features will help reduce the vulnerability of materials at these locations to flame and radiant heat exposures. Examples include use of 1) metal drip edge at the roof edge (i.e., where gutter meets roof) (Figure 6.5), and 2) metal flashing at the base of the wall.

Figure 6.3. Vent located in the blocking space in open-eave construction. Photo: Stephen L. Quarles

Figure 6.4. Under-eave strip vent located in a soffit. Photo: Stephen L. Quarles

Figure 6.5 Metal drip edge installed at the edge of the roof. In this case, the drip edge was part of the gutter. Photo: Stephen L. Quarles
where roof meets siding. Use of a noncombustible material can be necessary to plug gaps that can occur with certain roof coverings that create a gap between the covering and roof deck (e.g., barrel tile). This is sometimes referred to as “bird stopping” (Figure 6.6). Gutter cover devices are sometimes recommended or required to minimize the accumulation of debris in gutters.

Treatment in Codes

Building codes require a specified fire rating for the roof coverings. The specific fire rating depends on the designated fire hazard rating in the area. Because of the widespread availability of Class A roof coverings, these are most commonly used. Building codes also address ember exposures at some roof-to-wall or other roof intersection areas. The most common requirement is for providing bird stops at the roof edge and use of a gutter cover device.

New Construction Comparison

Four key roof features were modified for wildfire-resistance:

- Roofing and underlayment
- Ridge and soffit vents
- Fascia and soffit covering
- Gutters

Figure 6.7. Roof subcomponents and new construction cost.

Figure 6.6. Use of a mortar mix to provide an effective “bird stop” at the edge of this barrel style roof (this photograph was taken during a retrofit project while the work was in progress). Photo: Stephen L. Quarles
A wildfire-resistant roof can be constructed for an approximate 27% increase in cost (Figure 6.7). One of the most expensive features of the roof—the roofing material—was assumed on both the typical and wildfire-resistant home to be Class A asphalt shingles, a fire-resistant material and the most popular roofing material in North America. Wildfire-resistant additions to the roofing underlayment, vents, soffits, and gutters resulted in an increase of $5,860 or a 27% increase. Several of the materials selected here exceed the requirements of IWUIC, including wildfire-resistant sheathing, membrane, and vents that have been approved in California as being “ember and flame resistant.” More expensive roofing materials that would comply with IWUIC such as metal or clay tiles, or more expensive gutter options, can increase the cost difference to $33,340, or an increase of 153% (Table 6.1).

The typical sheathing of oriented strand board (OSB) was replaced with CDX plywood underlayment to reduce the potential for fire penetrating into the attic space. In the wildfire-resistant home, mineralized roll roofing was added in the roofing valleys to improve the fire resistance in this area because of the tendency of debris to accumulate in the roof valley area. When a roof covering allows for a gap between the covering and roof deck (e.g., a tile roof), one option to protect the roof deck is to install an asphalt fiberglass composition product.

Ridge and soffit vents in the typical home were replaced with vents designed specifically for fire-resistance that have finer-grained mesh and ember- and flame-resistant features. We examined a variety of manufacturers and found pricing to be in similar ranges. As an alternative to vents, we also priced an unvented attic option, which involves applying spray foam insulation to the underside of the roof deck, making the attic space part of the insulated building enclosure. Although removing vents eliminates the opportunity for ember entry, an unvented attic design can result in moisture-related performance issues. Additional measures—not priced in this study—will be necessary, such as applying a vapor retarder to the ceiling in the occupied portion of the home and sealing all gaps at through-ceiling penetrations.

On the wildfire-resistant home, the soffit was enclosed with fiber cement siding instead of plywood, resulting in a modest price increase. Cedar fascia was replaced with fire-retardant-treated redwood.

Vinyl gutters in the typical home were replaced with aluminum gutters. A metal drip edge was added to provide additional protection against flame and embers at the edge of the roof. A gutter cover device was added to reduce the accumulation of debris in the gutter.

Homes in cold climates will have added expenses for managing snow and ice when gutter cover devices are used. Gutter covers can increase the potential for ice damming and cause the gutter to detach from the building. Although it does not provide any direct benefit from a wildfire vulnerability perspective and may not be necessary in all climates, heat tape is necessary in cold climates and was priced here. Heated gutters were priced as an alternative.

As a complete alternative to gutters, a perimeter drain system was also evaluated. A perimeter drain eliminates the need for gutters and downspouts by using French drains around the perimeter of the house. This requires burying piping around the foundation of the home. Perimeter drain systems are not possible or advisable in all locations, depending on site conditions such as groundwater depth and foundation depth and material, for example. However, they can reduce vulnerability of the gutter by eliminating the ember-ignition likelihood from the accumulation of debris in the gutter.
Retrofit Analysis

Since the roof is one of the most vulnerable areas of the home to wildfire, retrofitting the roof to be more wildfire-resistant can be one of the most cost-effective and important actions a homeowner can take. Depending on which component is replaced and the size of the home, the cost can be as inexpensive as a few hundred dollars, to several thousand (Table 6.2). In the model home, complete retrofit of the entire roof to be wildfire-resistant totaled $22,010. Individual replacement of features ranged from $370 for replacing ridge vents to more than $20,000 for an unvented attic option.

Co-Benefits and Efficiencies

Energy Efficiency

The roof is a key component of a home’s natural ability to ventilate and moderate temperatures. A well-insulated and ventilated roof can improve the heating and/or cooling of the home. All of the features included here would contribute to improved venting (except an unvented attic) and efficiency.

Lifespan and Maintenance

Asphalt composition shingle roofs are very low-maintenance and can last several decades.

Gutter cover devices will reduce the amount of gutter cleaning required and can help reduce risk of falls during cleaning because fewer trips up the ladder will be required. When gutter cover devices are used in snowy climates, heat tape or heated gutters may be necessary to reduce the potential for ice damming. Use of heated gutter options require maintenance to ensure proper seasonal operation.

No matter what wildfire-resistant materials are used, none eliminate the need for ongoing maintenance. Homeowners should plan on regularly inspecting and maintaining the roof and gutters to remove accumulated debris.

Table 6.1: Roof New Construction

<table>
<thead>
<tr>
<th>Feature</th>
<th>Typical Feature</th>
<th>Wildfire-Resistant Feature</th>
<th>Cost Diff.</th>
<th>Percent Diff.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roofing</td>
<td>Roof covering</td>
<td>Asphalt shingles, class A architectural</td>
<td>0</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asphalt shingles, class A architectural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative: Steel roofing</td>
<td>8,060</td>
<td>86%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative: Clay tile</td>
<td>23,280</td>
<td>250%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Valley flashing</td>
<td>Metal</td>
<td>0</td>
<td>0%</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Sheathing</td>
<td>Oriented strand board (OSB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roll roofing</td>
<td>(none)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Membrane</td>
<td>(none)</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roofing subtotal</td>
<td></td>
<td>$1,500 – 24,780</td>
<td>10%</td>
<td>-167%</td>
<td></td>
</tr>
<tr>
<td>Vents</td>
<td>Ridge vents</td>
<td>Flexible roll</td>
<td>-130</td>
<td>-28%</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Soffit vents</td>
<td>Aluminum strips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire- and ember-resistant with 1/8" mesh screen</td>
<td>760</td>
<td>161%</td>
<td>B</td>
</tr>
<tr>
<td>Vents subtotal</td>
<td></td>
<td>$630</td>
<td>68%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soffit & Fascia</td>
<td>Fascia</td>
<td>Cedar band board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soffit covering</td>
<td>Plywood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soffit & fascia subtotal</td>
<td></td>
<td>$1,900</td>
<td>37%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gutters</td>
<td>Gutters</td>
<td>Vinyl</td>
<td>290</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drip edge</td>
<td>Aluminum</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gutter cover device</td>
<td>Aluminum mesh</td>
<td>640</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat tape</td>
<td>(none)</td>
<td>150</td>
<td></td>
<td>B, C</td>
</tr>
<tr>
<td></td>
<td>Heated gutter with cover</td>
<td>Alternative: heated gutter with guard</td>
<td>6,030</td>
<td>649%</td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td>Perimeter Drain</td>
<td>(none)</td>
<td>3,760</td>
<td>405%</td>
<td>A, D</td>
</tr>
<tr>
<td>Gutters subtotal</td>
<td></td>
<td>$1,830 - 6,030</td>
<td>197%</td>
<td>649%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$5,860 - 33,340</td>
<td>27%</td>
<td>153%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
A. Denotes an alternative to another material; a home would not utilize all materials listed. Totals columns account for range depending on which alternative is selected.
B. Materials priced from manufacturer, online retailer, or local distributor. Labor priced from RS Means.
C. Perimeter drain systems are not possible or advisable in all locations, depending on site conditions such as groundwater depth, frequency of wind-driven rain events, foundation depth and material, and site drainage.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Cost for model home</th>
<th>DIY</th>
<th>Priority Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof covering</td>
<td>Removal of existing wood shake roof covering and replacement with Class A roof covering. (Asphalt architectural shingles were priced for this study).</td>
<td>$13,180</td>
<td>Not recommended</td>
<td>Highest</td>
</tr>
<tr>
<td>Vulnerable Roof Vents</td>
<td>Removal of existing vulnerable attic vents and replacement with wildfire-resistant ridge vent, including replacement of surrounding shingles. (Other types of wildfire-resistant attic vents are available but were not priced for this study.)</td>
<td>$370</td>
<td>Not recommended</td>
<td>High</td>
</tr>
<tr>
<td>Gutters</td>
<td>Removal of vinyl gutters and replacement with new metal gutter and gutter cover device.</td>
<td>$2,110</td>
<td>Moderate skill required</td>
<td>High</td>
</tr>
<tr>
<td>Metal Drip Edge</td>
<td>Addition of a metal drip edge where gutter attaches at roof edge.</td>
<td>$750</td>
<td>Moderate skill required</td>
<td>High</td>
</tr>
<tr>
<td>Soffit</td>
<td>Enclosing the roof overhang with wildfire-resistant fiber cement soffit material including needed ventilation.</td>
<td>$5,600</td>
<td>Not recommended</td>
<td>High</td>
</tr>
<tr>
<td>Unvented Attic</td>
<td>As an alternative to ridge or other attic vents. An unvented attic requires removal of insulation in attic and replacement with spray polyurethane foam, as an alternative to replacing vents. Cost varies depending on climate zone and necessary thickness of foam. Cost does not include sealing the ceiling in occupied space below attic. Can be difficult in a retrofit scenario.</td>
<td>$20,650 - $32,910</td>
<td>Not recommended</td>
<td>-</td>
</tr>
</tbody>
</table>
VII. EXTERIOR WALLS VULNERABILITIES, MITIGATIONS, AND COST

This chapter analyzes the vulnerabilities, mitigations, code requirements, and costs related to constructing wildfire-resistant exterior walls, including sheathing and siding, doors, and windows.

Vulnerabilities

Exterior walls and components in the wall assembly can be vulnerable if exposed to flames or prolonged exposure to radiant heat from ignited items located relatively close to a home. Combustible items include bark mulch, vegetation, or nearby structures like neighboring homes, tool sheds, and fences. Fire can ignite combustible siding and penetrate gaps or joints in the siding and/or spread vertically and laterally to impinge on other wall components such as windows and the under-eave area. Walls that extend close to the ground (or, as already discussed, close to the roof) can be vulnerable to ignition if embers accumulate at the base of the wall and ignite it or components in the wall assembly (e.g., wood-based sheathing).

Doors and windows can also be vulnerable when exposed to flames or embers. Glass in a window can break from radiant heat or flame contact exposure. When a window is broken, the combustible materials inside the home (e.g., furniture, carpeting, drapes) can be ignited. Wood and vinyl framed windows can be vulnerable, burning or melting when exposed to radiant heat or flames if siding is ignited. However, studies have shown that glass is the most vulnerable component of a window.1 Doors (including window glass set in doors) and door frames can fail for the same reasons. Small gaps between the door and frame can also create opportunities for wind-blown embers to lodge and ignite the door framing material and potentially the weather sealing material.

Mitigation

To minimize the chance of an ignition from an ember exposure, a vertical noncombustible zone of at least 6 inches should be created between the ground and the start of the siding. Some mitigation strategies for exterior wall features are dependent on home-to-home spacing. If the exterior wall is within 30 feet of neighboring homes, a noncombustible or ignition-resistant material should be used for the siding. In some cases, additional sheathing can provide added protection by enhancing the fire resistance of the wall.

Research has consistently shown that glass is the most vulnerable component of window failure during a fire. Multi-pane tempered glass windows should be used to reduce the likelihood of a window breaking when exposed to radiant heat. Vinyl frames are more susceptible to damage from radiant heat than other frame types. The horizontal interlock member in a vinyl-framed single- or

Figure 7.1. This window frame was exposed to radiant heat. The metal-reinforced member (in the back) did not deform when exposed during the exposure interval. The member without the metal reinforcement deflected downward, allowing insulated glass unit to fall out (without initial glass breakage), exposing the interior of the home. Photo: IBHS.

HEADWATERS ECONOMICS
A double-hung window can be vulnerable to radiant heat or direct flame contact if a metal reinforcement member isn’t included (Figure 7.1). Aluminum or other metal window screens can help protect against ember entry if the glass breaks or if a window is inadvertently left open. When home-to-home spacing is less than 30 feet, metal shutters can provide added protection from embers, airborne debris, and radiant heat exposures.

Weather stripping around pedestrian and vehicle access doors can reduce the ability of embers to pass through openings between door and jamb but can also be vulnerable if embers accumulate against it and cause it to ignite or melt. The location of weather stripping on outswing doors is more vulnerable than inswing doors. Weather stripping containing fire retardants can reduce the vulnerability of this component.

Regardless of home spacing, mitigation strategies for exterior walls include creation and maintenance of an effective defensible space to reduce the chance of extended radiant heat or flame contact exposure to the siding, including a 0-5-foot noncombustible zone. This strategy is further discussed in a subsequent section.

Treatment in Codes

Code requirements for siding include specifying a noncombustible or ignition-resistant material. A specific kind of gypsum board can be used as an additional sheathing material that will improve the fire resistance of the exterior wall. This type of construction improves the ability of the wall assembly to resist the passage of fire from one side of the wall to the other. Care should be exercised when taking this approach as this is typically taken when a more vulnerable combustible material is used as the siding material. When using this option, siding materials with demonstrated lower flame spread should be used. This option will be problematic since a more vulnerable combustible material will most likely exhibit a higher flame spread.

Code requirements for the exterior wall also include multi-pane tempered glass windows and fire-resistant doors. Codes are typically silent on window frame material, meaning any framing material can be used.

New Construction Comparison

Wildfire-resistant exterior wall features are approximately 75% of the cost of typical features, creating a $12,190 savings for this model home (Figure 7.2). These savings result primarily from using a fiber cement lap siding in the wildfire-resistant home, which is nearly one-third the cost of the typical cedar lap siding product. Some homeowners may have a preference to the aesthetics of wood siding over fiber cement siding. However, many fiber cement options on the market today mimic the look and texture of natural wood, as did the fiber cement product priced for this study. Alternative siding costs were also examined, including stucco (a 28% savings over cedar lap siding) and fire-retardant-treated cedar lap siding (a 20% additional cost to cedar lap siding). The wildfire-resistant home also uses wildfire-resistant sheathing (CDX plywood instead of typical Oriented Strand Board), which exceeds the requirements in the International WUI Code (IWUIC).

Fire-resistant doors cost 28-37% more, or an increase of $1,640 to $2,220, in the model home. The bulk of this cost comes from replacing vinyl-framed deck sliding doors with steel-framed doors. A cost savings was realized from replacing the vinyl garage door with steel. IWUIC is silent on garage doors, so this modification exceeds IWUIC. A range of different front and side door options were also priced, including steel fire doors and fiberglass doors.
Windows cost approximately 36% more, increasing the model home by $3,060. Most of this increase is from using tempered glass in the windows, which increased their cost by an estimated 25%. This cost may be less for standard-sized windows or more for odd-sized windows, and may be less in markets where tempering is in higher demand or required by code. Tempered glass is specified as a requirement in IWUIC.

Figure 7.2. Exterior walls subcomponents and new construction cost.

Retrofit Analysis

To address the vulnerability of existing exterior walls to wildfire, several important components can be updated in pieces or in whole. Retrofitting the exterior walls of the model home (including doors and windows) to be wildfire-resistant cost $40,750—more than the cost of new wildfire-resistant construction. Removing all siding and assembly, including vapor barrier and sheathing, and replacing with wildfire-resistant materials varies in cost depending on the type of siding to be removed.

In some situations, not all siding would need to be retrofitted to be wildfire-resistant. The prioritization of retrofitting many exterior wall features is dependent on home-to-home separation and home siting. If home spacing is more than 30 feet and good defensible space is established—including incorporation of the noncombustible near-home landscaping zone—the siding material and underlayment is less of a priority. However, if neighboring homes are closer together, if a home is near a slope, or if a side of the home faces the primary wind direction, noncombustible siding and multi-pane tempered glass windows become more important. Although not included in this cost analysis, metal shutters can provide improved protection from flames and extended radiant heat exposures, especially when neighboring homes are closely spaced, and are a viable alternative to replacing windows.
Co-Benefits and Efficiencies

Energy Efficiency
Heat gain and loss from windows account for 25-30% of residential heating and cooling energy use. Replacing old windows in an existing home with better insulated, multi-pane windows can significantly decrease energy usage. Tempered glass is also safer because it is approximately four times more resistant to heat (compared to annealed glass) and does not form sharp shards when it breaks, but rather breaks into smaller chunks.

Lifespan and Maintenance
In addition to costing considerably less than cedar siding, fiber cement siding can have a longer lifespan and requires less maintenance.

Table 7.1: Exterior Walls New Construction

<table>
<thead>
<tr>
<th>Feature</th>
<th>Typical</th>
<th>Wildfire-Resistant</th>
<th>Cost Diff.</th>
<th>Percent Diff.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls Sheathing</td>
<td>Oriented strand board</td>
<td>CDX Plywood</td>
<td>370</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Siding</td>
<td>Cedar clapboard siding</td>
<td>Fiber cement lap siding (woodgrain texture for aesthetics)</td>
<td>-17,570</td>
<td>-59%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative: Stucco</td>
<td>-8,520</td>
<td>-28%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative: Fire retardant treated cedar horizontal lap siding</td>
<td>5,940</td>
<td>20%</td>
<td>A, B</td>
</tr>
<tr>
<td>Walls Subtotal</td>
<td></td>
<td></td>
<td>-17,200 - 6,310</td>
<td>-51% - 19%</td>
<td></td>
</tr>
<tr>
<td>Doors Front door</td>
<td>Birch solid core</td>
<td>Birch solid core</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel fire door</td>
<td>330</td>
<td>144%</td>
<td>A, C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fiberglass</td>
<td>370</td>
<td>162%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Steel insulated</td>
<td>Steel insulated</td>
<td>0</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel fire door</td>
<td>-210</td>
<td>-27%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fiberglass</td>
<td>-170</td>
<td>-22%</td>
<td>A</td>
</tr>
<tr>
<td>Sliding door</td>
<td>Vinyl</td>
<td>Aluminum</td>
<td>1,870</td>
<td>94%</td>
<td>B</td>
</tr>
<tr>
<td>(deck)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garage Door</td>
<td>Fiberglass</td>
<td>Steel</td>
<td>-490</td>
<td>-17%</td>
<td></td>
</tr>
<tr>
<td>Weather stripping</td>
<td>Vinyl threshold weather stripping and door sweeps</td>
<td>Silicone, fire-rated weather stripping and aluminum door sweep</td>
<td>100</td>
<td>86%</td>
<td>B</td>
</tr>
<tr>
<td>Garage door bottom</td>
<td>Rubber</td>
<td>Aluminum and neoprene</td>
<td>460</td>
<td>293%</td>
<td>B</td>
</tr>
<tr>
<td>Doors Subtotal</td>
<td></td>
<td></td>
<td>$1,730 - 2,310</td>
<td>28% - 37%</td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>Windows</td>
<td>Metal-clad wood frames; dual-pane tempered glass; aluminum screens</td>
<td>3,060</td>
<td>36%</td>
<td>B, D</td>
</tr>
<tr>
<td>Windows Subtotal</td>
<td></td>
<td></td>
<td>3,060</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>-12,410 - 11,680</td>
<td>-26% - 24%</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- A. Denotes an alternative to another material; a home would not utilize all materials listed. Totals columns account for range depending on which alternative is selected.
- B. Materials priced from manufacturer, online retailer, or local distributor. Labor priced from RS Means.
- C. Steel fire doors have weather stripping integrated, so cost of weather stripping would be eliminated.
- D. Based on pricing from manufacturer, we added 25% to all window cost for tempered glass. We also added 2% for aluminum screens.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Cost for model home</th>
<th>DIY</th>
<th>Priority Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siding</td>
<td>Removing existing siding and replacing with fiber-cement. Siding demolition cost varies depending on type to be removed. Siding replacement can also be prioritized in only the most vulnerable locations (e.g., only at roof-to-wall junctions)</td>
<td>$15,240</td>
<td>Not recommended</td>
<td>High if home-to-home spacing is less than 30 feet</td>
</tr>
<tr>
<td>Sheathing and Vapor Barrier</td>
<td>Removing existing vapor barrier and sheathing and replacing with wildfire-resistant materials, as an add-on when replacing siding.</td>
<td>$5,340</td>
<td>Not recommended</td>
<td>High if home-to-home spacing is less than 30 feet</td>
</tr>
<tr>
<td>Doors</td>
<td>Replacing all doors and weather-stripping with wildfire-resistant materials.</td>
<td>$8,120</td>
<td>Moderate skill required</td>
<td>Moderate priority</td>
</tr>
<tr>
<td>Windows</td>
<td>Removing existing windows and replacing with windows with tempered glass. Price varies significantly depending on type of frame to be removed and window sizes. Window demolition cost varies depending on frame type. Cost of new tempered glass window is approximately +25% cost of standard glass.</td>
<td>$12,050</td>
<td>Not recommended</td>
<td>Higher if home-to-home spacing is less than 30 feet or if defensible space is not established</td>
</tr>
</tbody>
</table>
VIII. DECK VULNERABILITIES, MITIGATIONS, AND COST

This chapter analyzes the vulnerabilities, mitigations, code requirements, and costs related to constructing a wildfire-resistant deck, including the decking (i.e., walking surface), the framing, and the fascia.

Vulnerabilities

Attached decks are a vulnerable component to a home because a burning deck could result in an extended radiant heat exposure to the side of the house. A burning deck could also result in a flame contact exposure to the home. Even if the home has noncombustible siding, the glass in access doors could be vulnerable to breakage, resulting in fire being able to enter the home.

Although metal deck boards are available, most deck board products are combustible (including wood and plastic composite boards). Decks with a noncombustible walking surface, such as light-weight concrete or a flagstone product, are available, but these decks are typically more expensive. Regardless of the walking surface, decks are typically supported by solid wood joists, beams, and columns that have been treated with a preservative to reduce the effects of moisture. Because dual treatments for fire and water are not available, preservative-treated wood members are more commonly used because of the more likely water-related degradation of decks and decking (e.g., from rain or snow).

Decks are vulnerable to wildfire if they are susceptible to ignition from wind-blown embers (firebrands) or from flames impinging from the underside of the deck. A flame contact exposure from the underside of the deck could result from ember-ignited debris or combustible materials stored under the deck or from burning vegetation located downslope from the deck.

Mitigation

When considering ways to make any component better able to resist wildfire exposures, the combination of managing vegetation and the use of wildfire-resistant materials and design features should always be considered. In the case of decks, vegetation management should include location of other combustible materials on the property. To minimize the potential for a flame contact exposure to the underside of the deck, the near-home noncombustible zone should extend under the entire footprint of any attached deck. When a home is located on a slope and an attached deck extends out over that slope, vegetation should be selected, located, and maintained in such a way as to reduce the opportunity for fire to impinge on the underside of the deck.

Regardless of the actions taken to minimize the opportunity for flames to contact the deck, when threatened by a wildfire, it will have to resist ignition from wind-blown embers. Higher-density deck board products, including plastic composites and the tropical hardwood products such as Ipe, are much more resistant to ignition from embers than the lower-density softwood deck board products (such as redwood and cedar) that are more commonly used. Fire-retardant treated (FRT) wood products are also more resistant to ignition from embers.

Deck enclosure is sometimes recommended to reduce the vulnerability of decks to wildfire. Whereas deck enclosure could protect the underside of a deck from a flaming exposure, caution should be used with certain enclosure techniques that can result in water-related degradation of the deck (e.g., fungal decay and insect damage). Such enclosure techniques restrict the ability of wet deck boards and framing members to dry out. They can also result in corroded fasteners.
When using combustible decking products, use of a foil-faced bitumen product, applied to the top surface of the support joists, has been shown to reduce the vulnerability of combustible decking products, particularly the non-fire-retardant treated medium-density solid wood products such as redwood and cedar (Figure 8.1). The foil-faced tape will result in deck boards self-extinguishing before the fire propagates far from the support joists if the deck boards are ignited by embers. The tape should extend about halfway down the side of the joist.

Other mitigation strategies for decks include increasing the gap between deck boards (e.g., from 1/8-inch to 1/4-inch) and increasing between-joist spacing from 16-inch on-center to 24-inch on-center. Structural and safety requirements should be confirmed before changing deck board or joist spacing.

Treatment in Codes

The three wildfire reference documents—the IWUIC, NFPA 1144, and California’s Chapter 7A—all have provisions that address the deck. All three focus on the walking surface of the deck, but there are differences in what is permitted by each document.

IWUIC and NFPA 1144 don’t allow for the use of non-fire-retardant treated wood. The only nominally combustible decking products that are allowed are those that qualify as “ignition resistant material.” Currently none of the commercially available plastic composite products comply with this requirement, so technically no non-fire-retardant-treated wood or plastic composite deck board products could be used. Both documents have a provision that allows for a fire-rated assembly to be used (this is referred to as a “one-hour fire rated assembly”) (Figure 8.2). When using deck boards this type of construction would likely make the deck more vulnerable to moisture-related degradation. This leaves few deck options that comply with IWUIC and NFPA 1144.
California’s Chapter 7A allows for the use of decking products that can pass a performance-based under-deck flame impingement test. Unlike the ICC IWUI Code and NFPA 1144, non-fire-retardant-treated wood and several plastic composite deck board products can comply with the standard test method and are therefore permitted under California’s Chapter 7A.

This approach has been controversial. Recent research has demonstrated that some non-fire retardant treated solid wood decking products are more easily ignited by wind-blown embers.\(^1\) Use of foil-faced tape can reduce the vulnerability of these products. Some plastic composite products can be more vulnerable to a flame impingement exposure. To minimize the vulnerability of all combustible decking products, the noncombustible zone must include the entire footprint of the deck.

New Construction Comparison

The cost of a wildfire-resistant deck was 19 to 43% more than the typical deck, increasing the cost by $1,860 to $6,060 for the model home (Figure 8.3). This deck would not be compliant with IWUIC or NFPA 1144, but would be compliant with California Chapter 7A.

Figure 8.3. Deck subcomponents and new construction cost.

The majority of this price increase resulted from the deck boards. We compared costs of several options for both the typical and wildfire-resistant models and found that prices varied significantly for typical materials, ranging from approximately $10 per square foot for redwood to $28 per square foot for cedar, whereas wildfire-resistant materials all fell into the range of $11 to $16 per square foot (Figure 8.4).

Moderate price increases were realized from modifications to the deck framing and fascia. Rough-sawn cedar columns visible on the deck were given fire-retardant treatment and foil-faced tape was added to the tops and sides of joists to reduce the likelihood of fire propagating from the anticipated ember exposure. The fascia board was also changed from rough-sawn cedar to fire-retardant-treated redwood.
Even the wildfire-resistant (ember-ignition resistant) materials priced here—polyethylene (PE) and PVC composite deck boards—are combustible and would currently only comply with California Chapter 7A—not with IWUIC or NFPA 1144. Prices for materials compliant with IWUIC and NFPA 1144 were difficult to find in the Montana market. Fire-retardant treated (FRT) wood is the most common option that would comply. Some estimates suggest a 20-25% cost increase for treatment, which would put the cost at a similar range to some composite options. However, availability and shipping of FRT deck boards may be challenging in remote, rural markets.

Testing shows that many products are not highly combustible in isolation. Deck fires become large when other fuel sources contribute, such as pine needles that accumulate on deck surfaces and in gaps between deck boards, combustible material stored under or on top of the deck, and decks overhanging slopes with combustible vegetation. Avoiding storage of combustibles under the deck and ongoing maintenance of defensible space are key to deck ignition-resistance.

Solid-surface decks provide an alternative to standard decking boards. These options can provide a noncombustible walking surface. Structural integrity and engineering requirements for sub-framing of a heavier, solid-surface deck are highly dependent on site conditions and local building codes, so they were not priced for this study.
Co-Benefits and Efficiencies

Lifespan and Maintenance

Plastic composite deck boards are reported to require less maintenance than wood deck boards, which can require regular cleaning and refinishing. Some of the composite decking products are resistant to fading and stains, and because of the plastic content are typically more resistant to rot, mold, and insect-related degradation. Some brands come with 25-plus year warranties and are made from recycled plastic and wood.

Regardless of decking materials used, ongoing maintenance of the deck is required. Regularly removing vegetation underneath the deck, as well as from between deck board gaps, is critical. In advance of an approaching wildfire, it is also important to remove furniture and other combustible materials from the surface of the deck.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Baseline</th>
<th>Wildfire-Resistant</th>
<th>Cost Diff.</th>
<th>Percent Diff.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decking Surface</td>
<td>Redwood decking</td>
<td>Composite (non-capped, non-woodgrain)</td>
<td>1,200</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative: PVC</td>
<td></td>
<td>1,820</td>
<td>22%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Alternative: Composite Woodgrain</td>
<td></td>
<td>2,310</td>
<td>28%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Alternative: Composite Capped</td>
<td></td>
<td>5,410</td>
<td>66%</td>
<td>A</td>
</tr>
<tr>
<td>Decking Surface Subtotal</td>
<td></td>
<td></td>
<td>$1,200 - 5,410</td>
<td>15% - 66%</td>
<td></td>
</tr>
<tr>
<td>Framing</td>
<td>Preservative-treated lumber</td>
<td>Preservative-treated lumber</td>
<td>0</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cedar rough sawn columns (visible on porch)</td>
<td>Exterior fire-retardant treated cedar rough sawn columns</td>
<td>50</td>
<td>19%</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(none) Foil-faced tape for joist top and sides</td>
<td></td>
<td>250</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Framing Subtotal</td>
<td></td>
<td></td>
<td>$300</td>
<td>32%</td>
<td></td>
</tr>
<tr>
<td>Fascia</td>
<td>Cedar rough sawn band board</td>
<td>Fire-retardant treated redwood band boards</td>
<td>350</td>
<td>59%</td>
<td>B</td>
</tr>
<tr>
<td>Fascia Subtotal</td>
<td></td>
<td></td>
<td>$350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$1,850 - 6,060</td>
<td>19% - 62%</td>
<td></td>
</tr>
</tbody>
</table>

Download detailed data tables at: https://headwaterseconomics.org/wildfire/homes-risk/building-costs-codes-appendix.

Notes

A. Denotes an alternative to another material; a home would not utilize all materials listed. Totals columns account for range depending on which alternative is selected.

B. Materials priced from manufacturer, online retailer, or local distributor. Labor priced from RS Means.

IX. NEAR-HOME LANDSCAPING VULNERABILITIES, MITIGATIONS, AND COST

This chapter analyzes the vulnerabilities, mitigations, code requirements, and costs related to developing wildfire-resistant near-home landscaping. For the purposes of this study, the near-home landscaping component includes the mulch and landscape fabric in a 5-foot zone immediately around the home, as well as under all attached decks.

Vulnerabilities

Landscaping makes the home vulnerable when, if ignited, it allows fire to burn to the home. Ignition of near-home mulch from ember exposure will allow flames to touch the home, regardless of how well defensible space has been planned and maintained.

Mitigation

Mitigation strategies include selection, placement, and maintenance of vegetation that reduces the chance fire can burn directly to the home. Professionals usually discuss this process by dividing the property into two to three zones where vegetation and other combustible materials are managed in such a way as to reduce the chance that fires can burn to the home. The incorporation of a near-home zone (typically specified as 5 feet wide, extending out from the building), where all combustible materials are removed (e.g., bark mulch, combustible vegetation, and stored materials like firewood) can minimize the opportunity of ignition.

Treatment in Codes

Codes specify development and maintenance of two zones, the first zone being from the edge of the home to 30 feet from the home and the second in the 30- to 100-foot area. It is common for “or to the property line” to be included in the text. None of the major codes require the 0- to 5-foot noncombustible zone (Figure 9.1).

New Construction Comparison

To make the model home wildfire-resistant, bark mulch was replaced with pea gravel. Weed and erosion control fabric was added in a 5-foot zone around the home and in the spaces under the deck. This resulted in a 210% cost increase over the typical materials, or an increase of $2,570 (Figure 9.2).
Co-Benefits and Efficiencies

Lifespan and Maintenance

Compared to organic mulch, pea gravel has a much longer lifespan and requires little to no maintenance, whereas organic mulch will need to be replenished annually as it decomposes. However, organic mulch can be more efficient at maintaining soil temperatures and absorbing water. In drier climates or for xeriscaping, pea gravel can promote healthy soil drainage and prevent unwanted vegetation.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Typical</th>
<th>Wildfire-Resistant</th>
<th>Cost Diff.</th>
<th>Percent Diff.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulch</td>
<td>Bark mulch</td>
<td>Pea gravel</td>
<td>2,030</td>
<td>166%</td>
<td></td>
</tr>
<tr>
<td>Landscape fabric</td>
<td>(none)</td>
<td>Polypropylene mesh erosion control fabric</td>
<td>540</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>$2,570</td>
<td>210%</td>
<td></td>
</tr>
</tbody>
</table>

Notes
A. Includes fabric under the deck.
X. CONCLUSION

Wildfire-Resistant Building Codes and Standards Add Minimal Cost to Homeowners and Builders

Converging trends of hotter, longer, more severe fire seasons and growth in the wildland-urban interface put more people and communities at risk to wildfire disasters. Laboratory research and evidence from post-fire assessments have demonstrated that local ignitability of the home itself and the nearby landscaping are major factors determining home survivability in a wildfire. Three existing building codes and standards provide ample guidance for how to construct wildfire-resistant homes. Such regulations can reduce wildfire loss, and more communities are considering their implementation.

City, county, and state governments must weigh many issues when considering new regulations, but the cost of constructing to comply with wildfire-resistant building codes need not be a barrier. The results of this study demonstrate that the cost of constructing new homes to be wildfire-resistant is not substantively different than the cost of typical construction. Retrofitting existing homes can have substantial costs, but components can be prioritized based on neighborhood and landscape context. Other factors, such as material availability and builder knowledge of wildfire-resistant construction techniques may vary from region to region. For example, IWUIC-compliant decking options were difficult to locate in Montana. However, communities can customize portions of the model codes and standards to address such regional variability. As wildfire-resistant construction becomes more common and in higher demand in wildfire-prone landscapes, these limitations are likely to decrease.

Beyond protecting individual homes, wildfire-related building codes and standards are likely to have many long-term benefits to communities. Reducing wildfire losses can lessen the long-term and profound consequences and disruption borne at the local level following disasters, such as lost business and property tax revenue, physical and mental health impacts, and damage to public infrastructure. Constructing homes to modern wildfire-resistant standards delivers additional benefits to homeowners and the environment, as many components are more sustainable, require reduced maintenance, and provide added energy efficiency.

Key Mitigations Can Be Implemented by Any Builder or Homeowner

Regardless of whether it is required by code within a jurisdiction, individual builders and homeowners can act to mitigate wildfire vulnerabilities with little added cost. Home survival in wildfire-prone areas depends on effective implementation of a coupled approach where 1) vegetation (and other combustible materials) on the property is wisely selected, located, and maintained; and 2) materials and design features of the home are selected that will reduce vulnerability to anticipated wildfire exposures. Homes threatened by wildfires will always be subjected to wind-blown embers. Therefore, all homes in wildfire-prone areas should include design details that minimize vulnerability to embers. The likelihood of a long-term radiant heat or flame contact exposure will be less likely on properties that have developed and continue to maintain an effective defensible space in terms of selection, location, and maintenance of vegetation and other combustible materials on the property.
Roof

The roof—with a large surface area and potential for accumulation of combustible vegetative debris—is one of the most vulnerable parts of a home. Key mitigations for the roof include:

1. Install a Class A fire-rated covering or assembly.
2. Where applicable, install bird stops at roof edge, including any ridges. An additional layer of protection can be attained if a layer of roll roofing is installed over the surface of the roof deck.
3. For complex roof designs where there are junctions between a roof and a wall (e.g., dormers), consider noncombustible siding.
4. The under-eave area should be constructed using a soffited eave design.
5. Both inlet (under-eave) and outlet (roof or gable) vents can be vulnerable to ember entry.
 - Vents should be covered with 1/8- to 1/16-inch noncombustible and corrosion-resistant screening. Vents covered with 1/16-inch screening should be cleaned regularly so that they can perform their moisture management function.
 - Ridge or off-ridge vents are less vulnerable than gable end vents.
 - Use of vents approved by the California Office of the State Fire Marshal Building Materials Listing Program, which have demonstrated a resistance to ember and flame exposures.

Exterior Walls

Exterior walls and windows are especially vulnerable when exposed to flames or radiant heat for extended periods, such as from vegetation or neighboring homes that have ignited. Doors and windows can also be vulnerable to wind-blown embers and flames. If there is a home or neighboring building within 30 feet, the potential for radiant heat from that structure—should it ignite—may be enough to ignite siding or break glass in windows, so additional mitigations may be necessary. Key mitigations for exterior walls include:

1. Make sure there is, at a minimum, a 6-inch noncombustible zone at the base of the wall (i.e., between the ground and start of siding).
2. Install multi-pane windows having tempered glass.
3. When vinyl windows are used, make sure single- and double-hung windows include metal reinforcement in interlock members.
4. If there is a home or neighboring building within 30 feet, use ignition-resistant or noncombustible siding and metal shutters.

Decks

Attached decks can ignite from embers landing on top of the deck and from ignited vegetation or materials underneath the deck. An ignited deck provides radiant heat exposure to the home’s siding, doors, and windows. Current wildfire codes and standards are inconsistent in their recommendations for decks, but key mitigations for decks include:

1. For deck boards, use noncombustible materials, fire-retardant treated wood, or decking products that meet the requirements of an ignition-resistant material. Non-fire-retardant treated redwood and cedar are vulnerable to ignition from ember exposures. Higher density decking products (e.g., plastic composite or imported tropical hardwood decking products) are less vulnerable to ignition from ember exposures. If used, plastic composite decking products should comply with the requirements of the California Office of the State Fire Marshal Building Materials Listing Program.
2. To reduce the likelihood of sustained flaming of ignited decking, install deck boards using a 1/4-inch gap between deck boards and install a foil-faced bitumen tape product on the structural support joists.
3. If an attached deck overhangs a steep slope, particularly with shrub or woodland vegetation that is not on the property or that cannot be maintained, use of a solid surface deck with an enclosed underside is a better option.
4. Incorporation of a noncombustible zone under the footprint of all attached decks is critical.

Near-Home Landscaping and the Home Ignition Zone

Managing vegetation and other combustible items on the property is important for reducing the energy and potential spread of fire. Regardless of vegetation maintenance and defensible space on the larger property, combustible vegetation and mulch in the near-home, 5-foot area immediately around the home can ignite and allow flames to touch the home. Key mitigations for landscaping include:

1. Follow readily available guidance on creating an effective defensible space on your property in a radius of at least 100 feet from the home (or to the property line).
2. Create a near-home noncombustible zone within 5 feet of the home and under the entire footprint of any attached deck.
3. A noncombustible fence section should be used for 5 to 8 feet where the fence connects to the home.

1 California Office of the State Fire Marshal Building Materials Listing Program. Available at: http://osfm.fire.ca.gov/strucfireengineer/strucfireengineer_bml